
Chapter 9
Visual Attributes for Fashion Analytics
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Abstract In this chapter, we describe methods that leverage clothing and facial
attributes as mid-level features for fashion recommendation and retrieval. We
introduce a system called Magic Closet for recommending clothing for different
occasions, and a system called Beauty E-Expert for hairstyle and facial makeup rec-
ommendation. For fashion retrieval, we describe a cross-domain clothing retrieval
system, which receives as input a user photo of a particular clothing item taken in
unconstrained conditions, and retrieves the exact same or similar item from online
shopping catalogs. In each of these systems, we show the value of attribute-guided
learning and describe approaches to transfer semantic concepts from large-scale
uncluttered annotated data to challenging real-world imagery.
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9.1 Motivation and Related Work

Visual analysis of people, in particular the extraction of facial and clothing attributes
[5, 6, 14, 37], is a topic that has received increasing attention in recent years by the
computer vision community. The task of predicting fine-grained facial attributes has
proven effective in a variety of application domains, such as content-based image
retrieval [16], and person search based on textual descriptions [9, 35]. We refer to
Chap.8 for a detailed analysis of methods for processing facial attributes.

Regarding the automated analysis of clothing images, several methods have been
proposed for context-aided people identification [10], fashion style recognition [13],
occupation recognition [32], and social tribe prediction [17]. Clothing parsing meth-
ods, which produce semantic labels for each pixel in the input image, have also
received significant attention in the past few years [20, 21, 26, 27, 38]. In the sur-
veillance domain, matching clothing images across cameras is a core subtask for the
well-known person reidentification problem [18, 31].

In this chapter, we demonstrate the effectiveness of clothing and facial attributes
asmid-level features for fashion analytics and retail applications. This is an important
area due to the accelerated growth of e-commerce applications and their enormous
financial potential.

Within this application domain, several recent methods have successfully used
visual attributes for product retrieval and search. Berg et al. [2] discover attributes
of accessories such as shoes and hand bags by mining text and image data from
the Internet. Liu et al. [24] describe a system for retrieving clothing items from
online shopping catalogs. Kovashka et al. [15] developed a system called “Whittle-
Search”, which is able to answer queries such as “Show me shoe images like these,
but sportier”. They used the concept of relative attributes proposed by Parikh and
Grauman [29] for relevance feedback. More details about this system is described in
Chap.5. Attributes for clothing have been explored in several recent papers [3–5].
They allow users to search visual content based on fine-grained descriptions, such
as a “blue striped polo-style shirt”.

Attribute-based representations have also shown compelling results for matching
images of people across domains [19, 31]. The work by Donahue and Grauman
[7] demonstrates that richer supervision conveying annotator rationales based on
visual attributes improves recognition performance. Sharmanska et al. [30] explored
attributes and rationales as a form of privileged information [34], considering a learn-
ing to rank framework. Along this direction, in one of the applications considered
in this chapter, we show that cross-domain image retrieval can benefit from feature
learning that simultaneously optimizes a loss function that takes into account visual
similarity and attribute classification.

Next, we will describe how visual attributes can serve as a powerful image rep-
resentation for fashion recommendation and retrieval. We start by describing two
systems for clothing and makeup recommendation, respectively, and then show an
attribute-guided learning method for cross-domain clothing retrieval.

http://dx.doi.org/10.1007/978-3-319-50077-5_8
http://dx.doi.org/10.1007/978-3-319-50077-5_5
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Fig. 9.1 Two typical clothing recommendation scenarios for Magic Closet. (Top panel) Cloth-
ing suggestion: given an occasion, the most suitable clothing combinations from the user’s photo
album are suggested. (Bottom panel) Clothing pairing: given an occasion and a reference clothing
item, the clothing most suitable for the occasion and most matched with the reference clothing is
recommended from online shopping websites

9.2 Recommendation Systems

In this section, we describe two recommendation systems based on attribute predic-
tion. In both cases, we use attributes as an intermediate representation to leverage
semantic knowledge from a large expert database. In the first case, we detail a system
to recommend clothing from a user’s collection for a given special occasion such
as a wedding, funeral or conference. We construct a latent SVM model where each
potential function in the latent SVM is defined specifically for the clothing recom-
mendation task. We use low-level visual features to predict intermediate clothing
attributes such as color, pattern, material, or collar type, which in turn are used to
predict the best choice of outfit for the given occasion from the user’s closet or from
online shopping stores.

In the second case, we develop a system to recommend hairstyle and makeup
selections for a user’s image without makeup and with either short or bound hair.
Again, we use visual features to predict intermediate attribute features for this task.
In this scenario, we use a multiple tree-structured super-graphs model to estimate
facial/clothing attributes such as a high forehead, flat nose bridge, or collar shape,
which in turn are used to predict the most suitable high-level beauty attributes such
as hair length or color, lip gloss color or the eye shadow template class.
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9.2.1 “Hi, magic closet, tell me what to wear!”

Problem:Only a few existing works target the clothing recommendation task. Some
online websites1 can support the service of recommending the most suitable cloth-
ing for an occasion. However, their recommendation tools are mainly based on dress
codes and common sense. Magic Closet is the first system to automatically investi-
gate the task of occasion-oriented clothing recommendation and clothing pairing by
mining the matching rules among semantic attributes from real images.

Magic Closet mainly addresses two clothing recommendation scenarios. The first
scenario is clothing suggestion. As shown in the top panel of Fig. 9.1, a user specifies
an occasion and the system will suggest the most suitable outfits from the user’s own
photo album. The second scenario is clothing pairing. As shown in the bottom panel
of Fig. 9.1, a user inputs an occasion and one reference clothing item (such as a T-shirt
the user wants to pair), and then the most matched clothing from the online shopping
website is returned (such as a skirt). The returned clothing should aesthetically pair
with the reference clothing well and also be suitable for the specified occasion. As
a result, the Magic Closet system can serve as a plug-in application in any online
shopping website for shopping recommendation.

Two key principles are considered when designing Magic Closet. One is wearing
properly.Wearing properlymeans putting on some suitable clothing,which conforms
to normative dress codes2 and common sense. The other is wearing aesthetically.
There are some aesthetic rules which need to be followed when one pairs the upper
body clothing and lower body clothing. For example, it looks weird to wear a red
coat and a green pants together.

Recommendation Model: In the model learning process, to narrow the semantic
gap between the low-level visual features of clothing and the high-level occasion
categories, we propose to utilize mid-level clothing attributes. Here 7 multivalue
clothing attributes are defined, including the category attribute (e.g., “jeans”, “skirts”)
and detail attributes, describing certain properties of clothing (e.g., color, pattern).

We propose to learn the clothing recommendation model through a unified latent
Support Vector Machine (SVM) framework [23]. The model integrates four poten-
tials: (1) visual features versus attribute, (2) visual features versus occasion, (3)
attributes versus occasion, and (4) attribute versus attribute. Here the first three poten-
tials relate to clothing-occasion matching and the last one describes the clothing-
clothing matching. Embedding these matching rules into the latent SVM model
explicitly ensures that the recommended clothing satisfies the requirement of wear-
ing properly and wearing aesthetically simultaneously.

A training clothing image is denoted as a tuple (x, au, al , o). Here x corresponds
to the visual features from the whole body clothing, which is formed by directly
concatenating the upper body clothing feature xu and lower body clothing feature
xl , namely x = [xu; xl ]. We extract 5 types of features from 20 upper body parts and
10 lower body parts detected using the methodology in [39]. The features include

1http://www.dresscodeguide.com/.
2Dress codes are written and unwritten rules with regards to clothing.

http://www.dresscodeguide.com/
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Fig. 9.2 Clothing category attributes. All the attributes are organized in a tree structure and only
the leaf nodes are considered in this work

Fig. 9.3 Detail attributes considered in this work

Histograms ofOrientedGradient (HOG), Local Binary Pattern (LBP), colormoment,
color histogram, and skin descriptor. More specifically, each human part is first par-
titioned into several smaller, spatially evenly distributed regular blocks. Features
extracted from all the blocks are finally concatenated into a 28,770 dimensional fea-
ture vector to represent a human part. The block-based features can roughly preserve
relative position information inside each human part.

The occasion categories of the clothing are represented by o ⊂ O, where O
denotes the finite occasion category set. Note that each clothing may have multi-
ple occasion category labels. The attributes of the upper body clothing are denoted
by a vector au = [au1 , . . . , auKu

]T , where Ku is the number of attributes considered
for the upper body clothing. Each attribute describes certain characteristic of the
upper body clothing, e.g., color, collar. Similarly, the attributes of the lower body
clothing are denoted as a vector al = [al1, . . . , alKl

]T . All the attributes considered in
this work are listed in Figs. 9.2 and 9.3.We denote the attribute set for the upper body
and lower body as Au and Al , respectively. Note that each attribute is multivalued
and we represent each attribute by a multidimensional binary value vector in the
model learning process. For example, the attribute “color” has 11 different values,
e.g., red, orange, etc. Then we represent the “color” attribute by an 11-dimensional
vector with each element corresponding to one specific type of color.

Given N training examples {(x(n), a(n)
u , a(n)

l , o(n))}Nn=1, our goal is to learn a model
that can be used to recommend the most suitable clothing for a given occasion
label o ∈ O, which considers clothing-occasion and clothing–clothing matching
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simultaneously. Formally speaking, we are interested in learning a scoring func-
tion fw : X × O → R, over an image x and a user specified occasion label o, where
w are the parameters of fw. Here X denotes the clothing image space. During test-
ing, fw can be used to suggest the most suitable clothing x∗ from X t (candidate
clothing repository) for the given occasion o as x∗ = argmaxx∈X t fw(x, o). While for
the clothing pairing recommendation, given specified lower body clothing xl , fw can
select the most suitable upper body clothing x∗

u as x
∗
u = argmaxxu∈X t

u
fw ([xu; xl ], o),

where X t
u denotes the candidate upper body clothing repository. For the lower body

clothing pairing, it works similarly.
The recommendation function is defined as follows:

wTΦ(x, au, al , o) = wT
o φ(x, o) +

∑

j∈Au∪Al

wT
a j

ϕ(x, a j )

+
∑

j∈Au∪Al

wT
o,a j

ω(a j , o) +
∑

( j,k)∈E
wT

j,kψ(auj , a
l
k). (9.1)

In this model, the parameter vector w is the concatenation of the parameters in all
the factors. Φ(x, au, al , o) is the concatenation of φ(x, o), ϕ(x, a j ), ω(a j , o) and
ψ(auj , a

l
k). It is a feature vector depending on the images x, the attributes au , al and

occasion label o. The model presented in Eq. (9.1) simultaneously considers the
dependencies among visual features, attributes, and occasions. In particular, its first
term predicts occasion from visual features; the second term describes the relation-
ship between visual features and attributes; the third term captures the relationship
between attributes and occasion. The last term expresses the dependencies between
the attributes of upper and lower body clothing. Instead of predicting the occa-
sion from visual features or attributes directly, we mine much richer matching rules
among them explicitly. The impacts of different relationships on the matching score
in Eq. (9.1) are automatically determined in the learning process, therefore, the four
relationships are not treated equally.

Model Learning and Inference: In this work, we adopt the latent SVM formu-
lation to learn the model as in [8]:

min
w,ξ

β‖w‖2 +
N∑

n=1

ξ (n)

s.t. max
au ,al

wTΦ(x(n), au, al , o(n)) − max
au ,al

wTΦ(x(n), au, al , o)

≥ Δ(o, o(n)) − ξ (n), ∀n,∀o ∈ O, (9.2)

where β is the tradeoff parameter controlling the amount of regularization, and ξ (n)

is the slack variable for the n-th training sample to handle the soft margin. Such an
objective function requires that the score of clothing for a suitable occasion should
be much higher than for a non-suitable occasion.Δ(o, o(n)) is a loss function defined
as
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Δ0/1(o(n), o) =
{
1 if o /∈ o(n)

0 otherwise

In Eq. 9.2, we aim to learn a discriminative occasion-wise scoring function on
each pair of clothing (more specifically, on their features and inferred attributes)
such that the scoring function can rank clothing correctly by maximizing the score
difference between suitable ones and unsuitable ones for the interest occasion.

After learning the model, we can use it to score any image-occasion pair (x, o).
The score is inferred as fw(x, o) = maxau ,al w

TΦ(x, au, al , o). Thus after specifying
the occasion o, we can obtain a rank of the clothing from the user’s clothing photo
album. In particular, given the parameter model w, we need to solve the following
inference problem during recommendation:

{a∗
u, a

∗
l } = argmax

au ,al
wTΦ(x, au, al , o),

which can be solved by linear programming since the attributes form a tree struc-
ture [36]. And then the clothing obtaining the highest score will be suggested, namely

x∗ = argmax
x

{
max
au ,al

wTΦ(x, au, al , o)
}

. (9.3)

Similarly, for the clothing pairing recommendation, given a specified upper body
clothing xu and the occasion o, the most suitable lower body clothing x∗

l is paired as:

x∗
l = argmax

xl

{
max
au ,al

wTΦ ([xu; xl ], au, al , o)
}

. (9.4)

The upper body clothing recommendation for a given lower body clothing is con-
ducted in a similar way.

Evaluation Metric and Baselines: We compare the proposed Magic Closet sys-
tem with two linear SVM-based models. The first baseline is a feature-occasion
multiclass linear SVMwhich predicts occasion from visual features directly without
considering attributes. After training based on {x(n), o(n)}Nn=1, given an occasion, all
the clothing in the repository are ranked according to the output confidence score
of the feature-occasion SVM. The second baseline feature-attribute-occasion SVM
is composed of a two-layer linear SVM. The first-layer SVM linearly maps visual
features to attribute values, which is trained based on {x(n), a(n)

u , a(n)
l }Nn=1. Then the

visual features are converted into attribute confidence score vectors via such first-
layer SVM. The second-layer SVM is trained on these attribute confidence vectors
to predict their occasion labels. Similar to feature-occasion SVM, all clothing in the
repository are ranked based on the output of the two-layer feature-attribute-occasion
SVM. We evaluate their performance via Normalized Discounted Cumulative Gain
(NDCG), which is commonly used to evaluate ranking systems.
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Fig. 9.4 Comparison of
Magic Closet with two
baselines on the clothing
suggestion task (NDCG vs. #
returned samples)

Experiment 1: Occasion-Oriented Clothing Suggestion To evaluate the perfor-
mance of the proposed method, we collect a dataset, which is split into three subsets.
The first subset WoW_Full includes 9,469 images containing visible full-body. The
second subset, denoted asWoW_Upper, contains 8,421 imageswith only upper body,
such as T-shirts, Fashion hoodies. And the 6,527 images containing lower body cloth-
ing, such as Jeans andSkirts, are put intoWoW_Lower.According to different sources
of data, WoW_Upper is further split into two subsets, one isWoW_Upper_DP where
all the images are Daily Photos (DP), which are crawled from popular photo sharing
websites, while the other one is WoW_Upper_OS, the photos of which are crawled
from Online Shopping (OS) websites. Similarly, both WoW_Lower and WoW_Full
subsets are further split into DP and OS subsets in the same way. Though in a
practical system all the clothing photos are from the same user, here in order to com-
prehensively evaluate theMagic Closet system for suggesting clothing with different
attributes,we simulate the suggestion scenario onWoW_Full_DPdataset,which con-
tains 6, 661 images from multiple users. We evenly split the WoW_Full_DP subset
into two groups. The first half WoW_Full_DP_1 together withWoW_Full_OS (con-
taining 2, 808 images) are used for training the latent SVM-based model embedded
inMagic Closet. The second half ofWoW_Full_DP_1 is used as testing set. Each set
of clothes is annotated with an occasion label, e.g., dating or conference. Given an
occasion, the clothing from the set which maximizes the score function in Eq. (9.3)
is suggested by Magic Closet.

Quantitative evaluation results of the clothing suggestion are shown in Fig. 9.4.
From the results, we can make the following observations. (1) The feature-occasion
SVM consistently outperforms the feature-attribute-occasion SVM. This is because
the visual features we adopt possess relatively strong discriminative power and their
high dimensionality benefits linear classification. We also observe that it is harder to
construct a linear relationship between low-dimensional attribute confidence vectors
and occasions. (2) The proposed latent SVM model outperforms the two baseline
models significantly. This result well demonstrates the effectiveness of the proposed
model in mining matching rules among features, attributes, occasions, and utilizing
their correlation in occasion-oriented clothing suggestion.
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Fig. 9.5 Comparison of
Magic Closet with baselines
for clothing pairing (NDCG
vs. # returned samples)

Experiment 2: Occasion-Oriented Clothing Pairing To simulate this scenario,
we collect 20 images (10 upper body and 10 lower body) as the queries. Summing up
across 8 occasions, the total number of queries is 160.The repository consists of cloth-
ing from online shopping dataset, including two subsets WoW_Upper_OS (2,500
images) and WoW_Lower_OS (3,791 images). In clothing pairing, for each query
of upper/lower body clothing, we provide the rank of the candidate lower/upperbody
clothing in the online shop dataset. The rank is calculated based on the pairs aesthetic
score and suitableness for the specified occasion, as evaluated in Eq. 9.4. To obtain
the ranking ground truth of the returned clothing, we do not require our labelers (40
people aging from 19 to 40) to score each candidate pair. We adopt the group-wise
labeling strategy: given an occasion, we randomly show 8 clothing as a group to
the labelers. So, labelers only need to rank the clothing within each group and the
final rank is obtained. Such strategy can alleviate the burden of labelers significantly.
Each pair is labeled at least 10 times and thus the potential inaccurate rank can be
eliminated via averaging.

Figure9.5 shows theNDCGvaluew.r.t. the increasing number of returned samples
of the baseline models and the Magic Closet system. From the figure, we can have
the following observations. (1) For the two baseline methods, the feature-attribute-
occasion SVM performs significantly better than the feature-occasion SVM. This
is because that the feature-occasion SVM is a linear model. The calculated pairing
score equals to wT [xu; xl] = wT

u xu + wT
l xl . The maximization of this score w.r.t.

xl is independent of xu . Therefore, for a specified occasion, for different queries,
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the returned results are identical. However, due to the good performance of feature-
occasion SVM in occasion prediction, it can still return suitable clothing for the
occasion. Thus its performance is still acceptable. While for the feature-attribute-
occasion SVM, since the features are mapped to the attribute space at first, this issue
is alleviated. Moreover, the attribute-based features are more robust to cross-domain
variation (DP vs. OS). (2) The proposed Magic Closet outperforms the two baseline
models. This result is as expected since Magic Closet can better capture matching
rules among attributes and thus recommend more aesthetic clothing pairs.

9.2.2 “Wow You Are so Beautiful Today!”

Wehave built a system calledBeauty e-Experts, a fully automatic system for hairstyle
and facial makeup recommendation and synthesis [25]. Given a user-provided frontal
face image with short/bound hair and no/light makeup, the Beauty e-Experts system
can not only recommend themost suitable hairdo andmakeup, but also show the syn-
thetic effects. The interface of the Beauty e-Experts system is shown in Fig. 9.6. The
main challenge in this problem is how tomodel the complex relationships among dif-
ferent beauty and facial/clothing attributes for reliable recommendation and natural
synthesis.

To obtain enough knowledge for beauty modeling, we build the Beauty
e-Experts Database, which contains 1,505 attractive female photos with a variety of
beauty attributes and facial/clothing attributes annotated [25]. Based on this Beauty
e-Experts Dataset, two problems are considered for the Beauty e-Experts system:
what to recommend and how to wear, which describe a similar process of selecting
hairstyle and cosmetics in our daily life. For the what-to-recommend problem, we
propose a multiple tree-structured super-graphs model to explore the complex rela-
tionships among the high-level beauty attributes, mid-level facial/clothing attributes,
and low-level image features, and then based on this model, the most compatible
beauty attributes for a given facial image can be efficiently inferred. For the how-to-
wear problem, an effective and efficient facial image synthesis module is designed
to seamlessly synthesize the recommended hairstyle and makeup into the user facial
image.

Beauty attributes, facial/clothing attributes, and features: To obtain beauty
knowledge from our dataset, we comprehensively explore different beauty attributes
on these images, including various kinds of hairstyles and facial makeups. We care-
fully organize these beauty attributes and set their attribute values based on some
basic observations or preprocessing on the whole dataset. Table9.1 lists the names
and values of all the beauty attributes considered in the work. For the first four beauty
attributes in Table9.1, their values are set intuitively, and for the last five ones, their
values are obtained by running the k-means clustering algorithm on the training
dataset for the corresponding features. We show the visual examples of specific
attribute values for some beauty attributes in Fig. 9.7.
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Fig. 9.6 Overall illustration of the proposed Beauty e-Experts system. Based on the user’s facial
and clothing characteristics, the Beauty e-Experts system automatically recommends the suitable
hairstyle and makeup products for the user, and then produces the synthesized visual effects

Table 9.1 A list of the high-level beauty attributes

Name Values

Hair length Long, medium, short

Hair shape Straight, curled, wavy

Hair bangs Full, slanting, center part, side part

Hair volume Dense, normal

Hair color 20 classes

Foundation 15 classes

Lip gloss 15 classes

Eye shadow color 15 classes

Eye shadow template 20 classes

We further explore a set of mid-level facial/clothing attributes to narrow the gap
between the high-level beauty attributes and the low-level image features. Table9.2
lists all the mid-level facial/clothing attributes annotated for the dataset. These mid-
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Table 9.2 A list of mid-level facial/clothing attributes considered in this work

Names Values

Forehead High, normal, low

Eyebrow Thick, thin

Eyebrow length Long, short

Eye corner Upcurved, downcurved, normal

Eye shape Narrow, normal

Ocular distance Hypertelorism, normal, hypotelorism

Cheek bone High, normal

Nose bridge Prominent, flat

Nose tip Wide, narrow

Mouth opened Yes, no

Mouth width Wide, normal

Smiling Smiling, neutral

Lip thickness Thick, normal

Fatness Fat, normal

Jaw shape Round, flat, pointed

Face shape Long, oval, round

Collar shape Strapless, v-shape, one-shoulder, high-necked, round, shirt collar

Clothing pattern Vertical, plaid, horizontal, drawing, plain, floral print

Clothing material Cotton, chiffon, silk, woolen, denim, leather, lace

Clothing color Red, orange, brown, purple, yellow, green, gray, black, blue, white, pink,
multicolor

Race Asian, Western

level attributes mainly focus on the facial shapes and clothing properties, which are
kept fixed during the recommendation and the synthesis process.3

After the annotation of the high-level beauty attributes and mid-level facial/
clothing attributes, we further extract various types of low-level image features on
the clothing and facial regions for each image in the Beauty e-Experts Dataset to
facilitate further beauty modeling. The clothing region of an image is automatically
determined based on its geometrical relationship with the face region. Specifically,
the following features are extracted for image representation:

• RGB color histogram and color moments on the clothing region.
• Histograms of oriented gradients (HOG) and local binary patterns (LBP) features
on the clothing region.

• Active shape model [28] based-shape parameters.
• Shape context [1] features extracted at facial points.

3Although the clothes of a user can be changed to make one look more beautiful, they are kept fixed
in our current Beauty e-Experts system.
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Fig. 9.7 Visual examples of the specific values for some beauty attributes

All the above features are concatenated to form a feature vector of 7,109 dimen-
sions, and then Principal Component Analysis (PCA) is performed for dimensional-
ity reduction. The compressed feature vector with 173 dimensions and the annotated
attribute values are then fed into an SVM classifier to train a classifier for each
attribute.

TheRecommendationModel: Based on the beauty attributes and facial/clothing
attributes, we propose to learn a multiple tree-structured super-graphs model to
explore the complex relationships among these attributes.Based on the recommended
results, an effective and efficient facial image synthesis module is designed to seam-
lessly synthesize the recommended results into the user facial image and show it
back to the user. The whole system processing flowchart is illustrated in Fig. 9.8.

A training beauty image is denoted as a tuple (〈x, ar 〉, ab). Here x is the image fea-
tures extracted from the raw image data; ar and ab denote the set of the facial/clothing
attributes and beauty attributes, respectively. Each attribute may have multiple dif-
ferent values, i.e., ai ∈ {1, . . . , ni }, where ni is the number of attribute values for the
i-th attribute. The facial/clothing attributes ar act as the mid-level cues to narrow the
gap between the low-level image features x and the high-level beauty attributes ab.
The recommendation model needs to uncover the complex relationships among the
low-level image features, mid-level facial/clothing attributes and high-level beauty
attributes, and make the final recommendation for a given image.

We model the relationships among the low-level image features, the mid-level
facial/clothing attributes, and the high-level beauty attributes from a probabilistic
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Fig. 9.8 Systemprocessing flowchart.Wefirst collect theBeauty e-ExpertsDatabase of 1,505 facial
images with different hairstyles and makeup effects. With the extracted facial and clothing features,
we propose a multiple tree-structured super-graphs model to express the complex relationships
among beauty and facial/clothing attributes. The results from multiple individual super-graphs are
fused based on a voting strategy. In the testing stage, the recommended hair and makeup templates
for the testing face are then applied to synthesize the final visual effects

perspective. The aim of the recommendation system is to estimate the probability of
beauty attributes, together with facial/clothing attributes, given the image features,
i.e., p

(
ab, ar |x), which can be modeled using the Gibbs distribution,

p
(
ab, ar|x) = 1

Z (x)
exp

(−E
(
ab, ar, x

))
, (9.5)

where Z (x)=∑
ab,ar exp

(−E
(
ab, ar, x

))
, also known as the partition function, is

a normalizing term dependent on the image features, and E(ab, ar, x) is an energy
function measuring the compatibility among the beauty attributes, facial/clothing
attributes, and image features. The beauty recommendation results can be obtained by
finding the most likely joint beauty attribute state âb = argmaxab maxar p

(
ab, ar |x).

The capacity of this probabilistic model fully depends on the structure of the
energy function E(ab, ar , x). Here we propose to learn a general super-graph struc-
ture to build the energy function which can theoretically be used to model any
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relationships among the low-level image features,mid-level facial/clothing attributes,
and high-level beauty attributes. To begin with, we give the definition of a super-
graph.

Definition 9.1 Super-graph: a super-graph G is a pair G = (V, E) where V is called
super-vertexes, consisting of a set of nonempty subsets of a basic node set, and E
is called super-edges, consisting of a set of two-tuples, each of which contains two
different elements in V .
It can be seen that a super-graph is actually a generalization of a graph in which a
vertex can have multiple basic nodes and an edge can connect any number of basic
nodes. When all the super-vertexes only contain one basic node, and each super-
edge is forced to connect to only two basic nodes, the super-graph then becomes a
traditional graph. A super-graph can be naturally used to model the complex rela-
tionships among multiple factors, where the factors are denoted by the vertexes and
the relationships are represented by the super-edges.

Definition 9.2 k-order super-graph: for a super-graph G = (V, E), if the maximal
number of vertexes involved by one super-edge in E is k, G is said to be a k-order
super-graph.

Based on the above definitions, we propose to use the super-graph to charac-
terize the complex relationships among the low-level image features, mid-level
facial/clothing attributes, and high-level beauty attributes in our problem. For exam-
ple, pairwise correlations can be sufficiently represented by a 2-order super-graph
(traditional graph), while other more complex relationships, such as one-to-two
and two-to-two relationships, can be represented by other higher order super-
graphs. Denote the basic node set A as the union of the beauty attributes and
facial/clothing attributes, i.e., A = {ai |ai ∈ ar ∪ ab}. Suppose the underlying rela-
tionships among all the attributes are represented by a super-graphG = (V, E), where
V = {ai |ai ⊂ A}. ai is a set of non-empty subsets of A. Note that we use ai to denote
a non-empty attribute set and ai to denote a single attribute. E is the super-edge set
that models their relationships, the energy function can then be defined as,

E
(
ab, ar , x

) =
∑

ai∈V
φi (ai , x) +

∑

(ai ,a j )∈E
φi j

(
ai , a j

)
. (9.6)

The first summation term is called FA (feature to attribute) potential, which is used
to model the relationships between the attributes and low-level image features, and
the second one is called AA (attribute to attribute) potential and is used to model
the complex relationships among different attributes represented by the super-edges.
φi (ai , x) and φi j

(
ai , a j

)
are the potential functions of the corresponding inputs,

which can be learned in different ways. Generally, the FA potential φi (ai , x) is
usually modeled as a generalized linear function in the form like

φi (ai = si , x) = ψai (x)
� wsi

i , (9.7)
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where si is the values for attribute subset ai , ψai (x) is a set of feature mapping
functions for the attributes in ai using SVM on the extracted features, and wi is the
FA weight parameters to be learned for the model. And the AA potential function
φi

(
ai , a j

)
is defined by a scalar parameter for each joint state of the corresponding

super-edge,
φi j

(
ai = si , a j = s j

) = w
si s j
i, j , (9.8)

where w
si s j
i, j is a scalar parameter for the corresponding joint state of ai and a j with

the specific value si and s j .
The learning of the super-graph-based energy function includes learning the struc-

ture and the parameters in the potential functions.
Model Learning: Structure Learning. For a super-graph built on a basic node

set A = {a1, . . . , aM }withM elements, we find a k-order tree-structured super-graph
for these vertexes. We first calculate the mutual information between each pair of
vertexes, and denote the results in the adjacencymatrix form, i.e.,W = {wi j }1≤i, j≤M .
Then we propose a two-stage algorithm to find the k-order tree-structured super-
graph.

In the first stage, we aim to find the candidate set of basic node subsets V =
{ai |ai ⊂ A}, which will be used to form the super-edges. The objective here is to
find the set of subsets that has the largest amount of total mutual information in the
result k-order super-graph. Here we first define a function that calculates the mutual
information of a subset set with a specified mutual information matrix,

f (V,W ) =
∑

|ai |≥2

∑

a j ,ak∈ai
w jk . (9.9)

Based on this definition, we formulate the candidate set generation problem as the
following optimization problem

argmax
V

f (V,W ),

s.t. |ai | ≤ �k + 1

2
�,∀i, (9.10)

|V| ≤ m,

where the first inequation is from the k-order constraint from the result super-graph,
�·� is the floor operator, and the parameter m in the second inequation is used to
ensure that the generated subsets have a reasonable size to cover all the vertexes and
make the inference on the result super-graph more efficient. Specifically, its value
can be set as

m =
{
M, k = 2,
2�M/(k − 1)�, otherwise, (9.11)

where �·� is the ceil operator. To solve this optimizationproblem,wedesign a k-means
like iterative optimization algorithm to find the solution. The algorithm first initial-
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izes some random vertex subsets and then reassigns each vertex to the subsets that
result in maximal mutual information increment; if one vertex subset has more than
�(k + 1)/2� elements, it will be split into two subsets; if the total cardinality of the
vertex subset set is larger than 2�M/(k − 1)�, two subsets with the smallest cardi-
nalities will be merged into one subset. This procedure is repeated until convergence.

The second stageof the two-stage algorithmfirst calculates themutual information
between the element pair that satisfies the order restrictions in each vertex subset.
The order constraint is that the maximal number of vertexes involved by one super-
edge in E is k. Then it builds a graph by using the calculated mutual information as
adjacency matrix, and the maximum spanning tree algorithm is adopted to find its
tree-structured approximation.

The above two-stage algorithm is run many times by setting different k values
and initializations of subsets, which then generates multiple tree-structured super-
graphs with different orders and structures. In order to make the parameter learning
tractable, the maximal k-value K is set to be equal to 5.

Model Learning: Parameter Learning. For each particular tree-structured
super-graph, its parameter set, including the parameters in the FA potentials and
the AA potentials, can be denoted in a whole as� = {wsi

i ,w
si s j
i j }. We adopt the max-

imal likelihood criterion to learn these parameters. Given N i.i.d. training samples
X = {〈xn, arn〉, abn}, we need to minimize the loss function

L = 1

N

N∑

n=1

Ln + 1

2
λ
∑

i,si

‖wsi
i ‖22

= 1

N

N∑

n=1

{− ln p
(
abn, a

r
n|xn

)} + 1

2
λ
∑

i,si

‖wsi
i ‖22, (9.12)

where Ln is the loss for each sample (expanded in the second line of the equation),
λ is the tradeoff parameter between the regularization term and log-likelihood and
its value is chosen by k-fold validation on the training set. Since the energy function
is linear with respect to the parameters, the log-likelihood function is concave and
the parameters can be optimized using gradient-based methods. The gradient of the
parameters can be computed by calculating their marginal distributions. Denoting
the value of attribute ai for training image n as âi , we have

∂Ln

∂wsi
i

= ([
âi = si

] − p (ai = si |xn)
)
ψai (xn) , (9.13)

∂Ln

∂w
si s j
i j

= [
âi = si , â j = s j

] − p
(
ai = si , a j = s j |xn

)
, (9.14)

where [·] is the Iverson bracket notation, i.e., [·] equals 1 if the expression is true,
and 0 otherwise.
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Based on the calculation of the gradients, the parameters can be learned from
different gradient-based optimization algorithms. In the experiments, we use the
implementation by Schmidt4 to learn these parameters. The learned parameters,
together with the corresponding super-graph structures, form the final recommenda-
tion model.

Inference: Here each learned tree-structured super-graph model can be seen as a
beauty expert. Given an input testing image, the systemfirst extracts the feature vector
x, and then each beauty expert makes its recommendation by performing inference
on the tree structure to find the maximum posteriori probability of p

(
ab, ar |x). The

recommendation results output by all the Beauty e-Experts are then fused bymajority
voting to make the final recommendation to the user.

The Synthesis Module: With the beauty attributes recommended by the multiple
tree-structured super-graphs model, we further synthesize the final visual effect of
hairstyle and makeup for the testing image. To this end, each makeup attribute forms
a template which can be directly obtained from a dataset. These obtained hair and
makeup templates are then fed into the synthesis process, which mainly has two
steps: alignment and alpha blending.

In the alignment step, both of the hairstyle and the makeup templates need to be
aligned with the testing image. For hair template alignment, a dual linear transfor-
mation procedure is proposed to put the hair template on the target face in the testing
image. For the makeup templates alignment, only the eye shadow template needs to
be aligned to the eye region in the testing image. Other makeup templates can be
directly applied to the corresponding regions based on the face keypoint detection
results. In the alpha blending step, the final result is synthesized with hair template,
makeup, and the testing face.

Experiments and Results: For the recommendation model in the Beauty
e-Experts system,we also implement some alternatives usingmulticlass SVM, neural
network, and latent SVM. Figure9.9 plots the comparison results of our proposed
model and other baselines. The performance is measured by NDCG, which is widely
used to evaluate ranking systems. From the results, it is observed that our model and
latent SVM significantly outperforms multiclass SVM and neural network. From
Fig. 9.9 it can be further found that our model has overall better performance than
the latent SVMmethod, especially in the top 15 recommendations.With higher order
relationships embedded, our model can express more complex relationship among
different attributes. In addition, by employing multiple tree-structured super-graphs,
our model obtains more robust recommendation results.

We then compare the hairstyle and makeup synthesis results with a few commer-
cial systems, including Instant Hair Makeover (IHM),5 Daily Makeover (DM),6 and
the virtual try-onwebsite (TAAZ).7 As shown in Fig. 9.10, the first column are the test
images, and the other four columns are the results generated by DM, IHM, TAAZ,

4http://www.di.ens.fr/~mschmidt/Software/UGM.html.
5http://www.realbeauty.com/hair/virtual/hairstyles.
6http://www.dailymakeover.com/games-apps/games.
7http://www.taaz.com.

http://www.di.ens.fr/~mschmidt/Software/UGM.html
http://www.realbeauty.com/hair/virtual/hairstyles
http://www.dailymakeover.com/games-apps/games
http://www.taaz.com
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Fig. 9.9 NDCG values of multiple tree-structured super-graphs model and three baselines. The
horizontal axis is the rank of top-k results, while the vertical axis is the corresponding NDCG
value. Our proposed method achieves better performance than the latent SVM model and other
baselines

Fig. 9.10 Contrast results of synthesized effect among commercial systems and our paper
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and our system, respectively. The reason why we select these three systems is that
only these three can synthesize both the hairstyle and makeup effects. The makeup
and hairstyle templates used in the synthesis process are selected with some user
interactions to ensure that all the four methods share similar makeups and hairstyles.
It can be seen that, even after some extra user interactions, the results generated from
these three websites have obvious artifacts. The selected hair templates cannot cover
the original hair area. IHM cannot even handle the mouth open cases.

9.3 Fine-Grained Clothing Retrieval System

In this section, we describe a fine-grained clothing retrieval system [12]. In a similar
fashion to the recommendation work described in the previous section, we use a
large-scale annotated dataset with many attributes to transfer knowledge to a noisy
real-world domain. In particular, given an offline clothing image from the “street”
domain, the goal is to retrieve the same or similar clothing items from a large-scale
gallery of professional online shopping images, as illustrated in Fig. 9.11.We propose
a Dual Attribute-aware Ranking Network (DARN) consisting of two subnetworks,
one for each domain, whose retrieval feature representations are driven by semantic
attribute learning.

Fig. 9.11 Cross-domain clothing retrieval. a Query image from daily photos. b Top-6 product
retrieval results from the online shopping domain. The proposed systemfinds the exact same clothing
item (first two images) and ranks the ones with similar attributes as top results
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9.4 Data Collection

We have collected about 453,983 online upper-clothing images in high-resolution
(about 800 × 500 on average) from several online shopping websites. Generally,
each image contains a single frontal-view person. From the text surrounding the
images, semantic attributes (e.g., clothing color, collar shape, sleeve shape, clothing
style) are extracted and parsed into 〈key, value〉 pairs, where each key corresponds to
an attribute category (e.g., color), and the value is the attribute label (e.g., red, black,
white). Then, we manually pruned the noisy labels, merged similar labels based on
human perception, and removed those with a small number of samples. After that, 9
categories of clothing attributes are extracted and the total number of attribute values
is 179. As an example, there are 56 values for the color attribute.

The specified attribute categories and example attribute values are presented in
Table9.3. This large-scale dataset annotated with fine-grained clothing attributes is
used to learn a powerful semantic representation of clothing, as we will describe in
the next section.

Recall that the goal of our retrieval problem is to find the online shopping images
that correspond to a given query photo in the “street” domain uploaded by the user.
To analyze the discrepancy between the images in the shopping scenario (online
images) and street scenario (offline images), we collect a large set of offline images
with their online counterparts. The key insight to collect this dataset is that there are
many customer review websites where users post photos of the clothing they have
purchased. As the link to the corresponding clothing images from the shopping store
is available, it is possible to collect a large set of online–offline image pairs.

We initially crawled 381,975 online–offline image pairs of different categories
from the customer review pages. Then, after a data curation process, where several
annotators helped removing unsuitable images, the data was reduced to 91,390 image
pairs. For each of these pairs, fine-grained clothing attributes were extracted from
the online image descriptions. As can be seen, each pair of images depict the same

Table 9.3 Clothing attribute categories and example values. The number in brackets is the total
number of values for each category

Attribute categories Examples (total number)

Clothes button Double Breasted, Pullover, … (12)

Clothes category T-shirt, Skirt, Leather Coat … (20)

Clothes color Black, White, Red, Blue … (56)

Clothes length Regular, Long, Short … (6)

Clothes pattern Pure, Stripe, Lattice, Dot … (27)

Clothes shape Slim, Straight, Cloak, Loose … (10)

Collar shape Round, Lapel, V-Neck … (25)

Sleeve length Long, Three-quarter, Sleeveless … (7)

Sleeve shape Puff, Raglan, Petal, Pile … (16)
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Fig. 9.12 The distribution of online–offline image pairs

clothing, but in different scenarios, exhibiting variations in pose, lighting, and back-
ground clutter. The distribution of the collected online–offline images is illustrated in
Fig. 9.12. Generally, the number of images of different categories in both scenarios
are almost in the same order of magnitude, which is helpful for training the retrieval
model.

In summary, our dataset is suitable to the clothing retrieval problem for several rea-
sons. First, the large amount of images enables effective training of retrieval models,
especially deep neural network models. Second, the information about fine-grained
clothing attributes allows learning of semantic representations of clothing. Last but
not least, the online–offline images pairs bridge the gap between the shopping sce-
nario and the street scenario, providing rich information for real-world applications.

9.4.1 Dual Attribute-Aware Ranking Network

In this section, the Dual Attribute-aware Ranking Network (DARN) is introduced
for retrieval feature learning. Compared to existing deep features, DARN simultane-
ously integrates semantic attributes with visual similarity constraints into the feature
learning stage, while at the same time modeling the discrepancy between domains.

Network Structure. The structure of DARN is illustrated in Fig. 9.13. Two sub-
networks with similar Network-in-Network (NIN) models [22] are constructed as
its foundation. During training, the images from the online shopping domain are
fed into one subnetwork, and the images from the street domain are fed into the
other. Each subnetwork aims to represent the domain-specific information and gen-
erate high-level comparable features as output. The NIN model in each subnetwork
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Fig. 9.13 The specific structure of DARN, which consists of two subnetworks for images of the
shopping scenario and street scenario, respectively. In each subnetwork, it contains a NIN network,
including all the convolutional layers, followed by two fully connected layers. The tree-structure
layers are put on top of each network for attribute learning. The output features of each subnetwork,
i.e., FC1, Conv4-5, are concatenated and fed into the triplet ranking loss across the two subnetworks

consists of five stacked convolutional layers followed byMLPConv layers as defined
in [22], and two fully connected layers (FC1, FC2). To increase the representation
capability of the intermediate layer, the fourth layer, named Conv4, is followed by
two MLPConv layers.

On top of each subnetwork, we add tree-structured fully connected layers to
encode information about semantic attributes. Given the semantic features learned
by the two subnetworks, we further impose a triplet-based ranking loss function,
which separates the dissimilar images with a fixed margin under the framework of
learning to rank. The details of semantic information embedding and the ranking
loss are introduced next.

Semantic InformationEmbedding. In the clothing domain, attributes often refer
to the specific description of certain parts (e.g., collar shape, sleeve length) or clothing
(e.g., clothes color, clothes style). Complementary to the visual appearance, this
information can be used to form a powerful semantic representation for the clothing
retrieval problem. To represent the clothing in a semantic level, we design tree-
structure layers to comprehensively capture the information of attributes and their
full relations.

Specifically,we transmit theFC2 response of each subnetwork to several branches,
where each branch represents a fully connected network to model each attribute
separately. In this tree-structured network, the visual features from the low-level
layers are shared among attributes; while the semantic features from the high-level
layers are learned separately. The number of neurons in the output-layer of each
branch equals the number of corresponding attribute values. Since each attribute has
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a single value, the cross-entropy loss is used in each branch. Note that the values of
some attributes may be missing for some clothing images. In this case, the gradients
from the corresponding branches are simply set to zero.

During the training stage, the low-level representation of clothing images is
extracted layer by layer. As the activation transfers to the higher layers, the rep-
resentation becomes more and more abstract. Finally, the distinctive characteristic of
each attribute is modeled in each branch. In the back-propagation, the gradient of loss
from each attribute w.r.t. the activation of FC2 layer are summed up and transferred
back for weight update.

Learning to Rank with Semantic Representation: In addition to encoding the
semantic representation, we apply the learning to rank framework on DARN for
retrieval feature learning. Specifically, the triplet-based ranking loss is used to con-
strain the feature similarity of image triplets. Denoting a and b the features of an
offline image and its corresponding online image, respectively, the objective function
of the triplet ranking loss is:

Loss(a, b, c) = max(0,m + dist (a, b) − dist (a, c)), (9.15)

where c is the feature of the dissimilar online image, dist (·, ·) represents the feature
distance, e.g., Euclidean distance, andm is themargin, which is empirically set as 0.3
according to the average feature distance of image pairs. Basically, this loss function
imposes that the feature distance between an online–offline clothing pair should be
less than that of the offline image and any other dissimilar online image by at least
margin m.

In this way, we claim that the triplet ranking loss has two advantages. First and
obviously, the desirable ranking ordering can be learned by this loss function. Second,
as the features of online and offline images come from two different subnetworks,
this loss function can be considered as the constraint to guarantee the comparability
of features extracted from those two subnetworks, therefore bridging the gap between
the two domains.

We found that the response of FC1 layer, i.e., the first fully connected layer,
achieves the best retrieval result. Therefore, the triplet ranking loss is connected to
the FC1 layer for feature learning. However, the response from the FC1 layer encodes
global features, implying that subtle local informationmaybe lost,which is especially
relevant for discriminating clothing images. To handle this problem, we claim that
local features captured by convolutions should also be considered. Specifically, the
max-pooling layer is used to down-sample the response of the convolutional layers
into 3 × 3 × fn , where fn is the number of filters in the n-th convolutional layer.
Then, the down-sampled response is vectorized and concatenated with the global
features. Lastly, the triplet ranking loss is applied on the concatenated features of
every triplet. In our implementation, we select the pooled response map of Conv4
and Conv5, i.e., the last two convolutional layers, as local features.



9 Visual Attributes for Fashion Analytics 239

9.4.2 Clothing Detection

As a preprocessing step, the clothing detection component aims to eliminate the
impact of cluttered backgrounds by cropping the foreground clothing from images,
before feeding them into DARN. Our method is an enhanced version of the R-CNN
approach [11],which has recently achieved state-of-the-art results in object detection.

Analogous to the R-CNN framework, clothing proposals are generated by selec-
tive search [33], with some unsuitable candidates discarded by constraining the range
of size and aspect ratio of the bounding boxes. Similar to Chen et al. [5], we process
the region proposals by a NIN model. However, our model differs in the sense that
we use the attribute-aware network with tree-structured layers as described in the
previous section, in order to embed semantic information as extra knowledge.

Based on the attribute-aware deep features, support vector regression (SVR) is
used to predict the intersection over union (IoU) of clothing proposals. In addition,
strategies such as the discretization of IoU on training patches, data augmentation,
and hard example mining, are used in our training process. As post-processing,
bounding box regression is employed to refine the selected proposals with the same
features used for detection.

9.4.3 Cross-Domain Clothing Retrieval

Wenowdescribe the implementation details of our complete system for cross-domain
clothing retrieval.

Training Stage. The training data is comprised of online–offline clothing image
pairs with fine-grained clothing attributes. The clothing area is extracted from all
images using our clothing detector, and then the cropped images are arranged into
triplets.

In each triplet, the first two images are the online–offline pairs, with the third
image randomly sampled from the online training pool. As the same clothing images
have an unique ID, we sample the third online image until getting a different ID than
the online–offline image pair. Several such triplets construct a training batch, and
the images in each batch are sequentially fed into their corresponding subnetwork
according to their scenarios. We then calculate the gradients for each loss function
(cross-entropy loss and triplet ranking loss) w.r.t. each sample, and empirically set
the scale of gradients from those loss functions as 1. Lastly, the gradients are back
propagated to each individual subnetwork according to the sample domain.

We pre-trained our network as well as the baseline networks used in the exper-
iments on the ImageNet dataset (ILSVRC-2014), as this yields improved retrieval
results when compared to random initialization of parameters.
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End-to-end Clothing Retrieval. We have set up an end-to-end real-time clothing
retrieval demo on our local server. In our retrieval system, 200,000 online clothing
images cropped by the clothing detector are used to construct our retrieval gallery.
Given the cropped online images, the concatenated responses from FC1 layer, pooled
Conv4 layer, and pooled Conv5 layer of one subnetwork of DARN corresponding
to shop scenario are used as the representation features. The same processes are
operated on the query image, except that the other subnetwork of DARN is used for
retrieval feature extraction. We then l2 normalize the features from different layers
for each image. PCA is used to reduce the dimensionality of the normalized features
(17,920-D for DARNwith Conv4-5) into 4,096-D, which conducts a fair comparison
with other deep features using FC1 layer output only. Based on the preprocessed
features, the Euclidean distance between query and gallery images is used to rank
the images according to the relevance to the query.

9.4.4 Experiments and Results

For the retrieval experiment, about 230,000 online images and 65,000 offline images
are sampled for network training. In the training process, each offline image and its
online counterpart are collected, with the dissimilar online image randomly sampled
from the 230,000 online pool to construct a triplet. To make the retrieval result
convincing, the rest 200,000 online images are used as the retrieval gallery.

For clothing retrieval, the approach using Dense-SIFT (DSIFT) + fisher vector
(FV) is selected as traditional baseline. To analyze the retrieval performance of deep
features, we compare pretrained networks including AlexNet (pretrained CNN) and
pretrained NIN. We denote the overall solution as Dual Attribute-aware Ranking
Network (DARN), the solution without dual structure as Attribute-aware Ranking
Network (ARN), the solution without dual structure and the ranking loss function as
Attribute-aware Network (AN). We further evaluate the effectiveness of DARN in
terms of different configurations w.r.t. the features used, DARN using the features
obtained from FC1, DARN with Conv4 using the features from FC1+Conv4, and
DARNwith Conv4-5 using the features from FC1+Conv4+Conv5. It is worth noting
that the dimension of all features is reduced to 4096 byPCA to have a fair comparison.

Figure9.14 shows the full detailed top-k retrieval accuracy results for different
baselines as well as their proposed methods. We vary k as the tuning parameter as it
is an important indicator for a real system.
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Fig. 9.14 The top-k retrieval accuracy on 200,000 retrieval gallery. The number in the parentheses
is the top-20 retrieval accuracy

9.5 Summary

In this chapter,we reviewed fashion attribute prediction and its applications in fashion
recommendation and fashion retrieval.We introduced two recommendation systems.
The first system is called Beauty E-expert, a fully automatic system for hairstyle and
facial makeup recommendation. The second system is called Magic Closet, which
is an occasion-oriented clothing recommendation system. For fashion retrieval, a
fine-grained clothing retrieval system was developed to retrieve the same or similar
clothing items from online shopping stores based on a user clothing photo. In each of
these systems, we described an approach to transfer knowledge from a large ground
truth dataset to a specific challenging real-world scenario. Visual features were used
to learn semantic fashion attributes and their relationships to images from a similar
but more challenging user domain. By simultaneously embedding semantic attribute
information and visual similarity constraints, we have been able to construct practical
real-world systems for fashion analytics.
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