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Abstract In this paper, we formulate object tracking in
a particle filter framework as a structured multi-task sparse
learning problem, which we denote as Structured Multi-Task
Tracking (S-MTT). Since we model particles as linear combi-
nations of dictionary templates that are updated dynamically,
learning the representation of each particle is considered a
single task in Multi-Task Tracking (MTT). By employing
popular sparsity-inducing �p,q mixed norms (specificallyp ∈
{2,∞} and q = 1), we regularize the representation prob-
lem to enforce joint sparsity and learn the particle representa-
tions together. As compared to previous methods that handle
particles independently, our results demonstrate that mining
the interdependencies between particles improves tracking

Electronic supplementary material The online version of this
article (doi:10.1007/s11263-012-0582-z) contains supplementary
material, which is available to authorized users.

T. Zhang
Advanced Digital Sciences Center (ADSC), 1 Fusionopolis Way,
#08-10 Connexis North Tower, Singapore138632, Singapore
e-mail: tzzhang10@gmail.com

B. Ghanem
King Abdullah University of Science and Technology (KAUST),
Al Khwarizmi Building #2224, Thuwal, Kingdom of Saudi Arabia
e-mail: bernard.ghanem@kaust.edu.sa

S. Liu (B)
Department of Electrical and Computer Engineering,
National University of Singapore, 4 Engineering Drive 3,
Singapore 117576, Singapore
e-mail: dcslius@nus.edu.sg

N. Ahuja
Department of Electrical and Computer Engineering, Beckman
Institute, and Coordinated Science Laboratory,
University of Illinois at Urbana-Champaign, 2041 Beckman Institute,
405 N. Mathews Ave., Urbana, IL 61801, USA
e-mail: ahuja@vision.ai.uiuc.edu

performance and overall computational complexity. Interest-
ingly, we show that the popular L1 tracker (Mei and Ling,
IEEE Trans Pattern Anal Mach Intel 33(11):2259–2272,
2011) is a special case of our MTT formulation (denoted
as the L11 tracker) when p = q = 1. Under the MTT
framework, some of the tasks (particle representations) are
often more closely related and more likely to share common
relevant covariates than other tasks. Therefore, we extend
the MTT framework to take into account pairwise struc-
tural correlations between particles (e.g. spatial smooth-
ness of representation) and denote the novel framework as
S-MTT. The problem of learning the regularized sparse rep-
resentation in MTT and S-MTT can be solved efficiently
using an Accelerated Proximal Gradient (APG) method that
yields a sequence of closed form updates. As such, S-MTT
and MTT are computationally attractive. We test our pro-
posed approach on challenging sequences involving heavy
occlusion, drastic illumination changes, and large pose vari-
ations. Experimental results show that S-MTT is much bet-
ter than MTT, and both methods consistently outperform
state-of-the-art trackers.

Keywords Visual tracking · Particle filter · Graph ·
Structure · Sparse representation · Multi-task learning

1 Introduction

The problem of tracking a target in video arises in many
important applications such as automatic surveillance, robot-
ics, human computer interaction, etc. For a visual tracking
algorithm to be useful in real-world scenarios, it should be
designed to handle and overcome cases where the target’s
appearance changes from frame-to-frame. Significant and
rapid appearance variation due to noise, occlusion, varying
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Fig. 1 (Color online) Frames from a shaking sequence. The ground
truth track of the head is designated in green. Due to fast motion, occlu-
sion, cluttered background, and changes in illumination, scale, and pose,
visual object tracking is a difficult problem

viewpoints, background clutter, and illumination and scale
changes pose major challenges to any tracker as shown in
Fig. 1. Over the years, a plethora of tracking algorithms
have been proposed to overcome these challenges. For a
survey of many of these algorithms, we refer the reader
to Yilmaz et al. (2006).

Recently, sparse representation (Candès et al. 2006) has
been successfully applied to visual tracking (Mei and Ling
2011; Mei et al. 2011; Liu et al. 2010, 2011). In this case,
the tracker represents each target candidate as a sparse linear
combination of dictionary templates that can be dynamically
updated to maintain an up-to-date target appearance model.
This representation has been shown to be robust against par-
tial occlusions, which leads to improved tracking perfor-
mance. However, sparse coding based trackers perform com-
putationally expensive �1 minimization at each frame. In a
particle filter framework, computational cost grows linearly
with the number of sampled particles. It is this computational
bottleneck that precludes the use of these trackers in real-
time scenarios. Consequently, very recent efforts have been
made to speedup this tracking paradigm (Mei et al. 2011; Li
et al. 2011). More importantly, these methods learn sparse
representations of particles separately. Ignoring the relation-
ships that ultimately constrain particle representations tend to
make the tracker more prone to drifting away from the target,
especially in cases of significant changes in appearance.

In this paper, we propose a computationally efficient
multi-task sparse learning approach for visual tracking in
a particle filter framework. Here, learning the representation
of each particle is viewed as an individual task. Inspired by
the above work, the next target state is selected to be the
particle that has the highest similarity with a dictionary of
target templates. Unlike previous methods, we exploit sim-
ilarities among particles and, therefore, seek an accurate,

joint representation of these particles w.r.t. the dictionary. In
our multi-task approach, particle representations are jointly
sparse – only a few (but the same) dictionary templates
should be used to represent all the particles at each frame. As
opposed to sparse coding based trackers (Mei and Ling 2011;
Mei et al. 2011; Liu et al. 2010, 2011) that handle particles
separately, our use of joint sparsity incorporates the benefits
of a sparse particle representation (e.g. partial occlusion han-
dling), while respecting the underlying relationship between
particles, which inherently yields a tracker that is more robust
against various sources of appearance change. Therefore,
we propose a multi-task formulation (denoted as Multi-Task
Tracking or MTT) for the robust object tracking problem.
We exploit interdependencies among the appearances of dif-
ferent particles to obtain their representations jointly. Joint
sparsity is imposed on particle representations through an
�p,q mixed-norm regularizer, which is optimized using an
Accelerated Proximal Gradient (APG) method that guaran-
tees fast convergence. In fact, joint sparsity can be viewed as
a global form of structural regularization that influences all
particle representations together. Furthermore, to extend the
MTT framework to enforce local structure, we observe that
some tasks (particle representations) are often more closely
related and more likely to share common relevant covariates
than other tasks. Therefore, we expand the MTT framework
to consider pairwise structural correlations between particles
(e.g. spatial smoothness of representation) and denote the
novel framework as Structured Multi-Task Tracking abbre-
viated as S-MTT. A preliminary conference version of this
work can be referred to in Zhang et al. (2012b).

Contributions: The contributions of this work are three-fold.

1. We propose a multi-task sparse learning method for
object tracking, which is a robust sparse coding method
that mines relationships between different tasks to obtain
better tracking results than learning each task individ-
ually. This is done by exploiting both global and local
structure among tasks. To the best of our knowledge, this
is the first work to exploit multi-task learning in object
tracking.

2. We show that the popular L1 tracker (Mei and Ling 2011)
is a special case of the proposed MTT framework.

3. Since we learn particle representations jointly, we can
solve the S-MTT and MTT problems efficiently using an
APG method. This makes our tracking method computa-
tionally attractive in general and significantly faster than
the traditional L1 tracker in particular.

The rest of the paper is organized as follows. In Sect. 2,
we summarize the works most related to ours. The parti-
cle filter algorithm is reviewed in Sect. 3. Section 4 gives a
detailed description of the proposed tracking approach, with
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the optimization details presented in Sect. 4.3. Experimental
results are reported and analyzed in Sect. 5. We conclude the
paper in Sect. 6.

2 Related Work

Visual tracking is an important topic in computer vision and
it has been studied for several decades. There is extensive
literature on visual object tracking. In what follows, we only
briefly review nominal tracking methods and those that are
the most related to our own. We focus specifically on tracking
methods that use particle filters and sparse representation,
as well as, general multi-task learning methods. For a more
thorough survey of tracking methods, we refer the readers to
Yilmaz et al. (2006).

2.1 Object Tracking

In general, object tracking methods can be categorized as
either generative or discriminative.

2.1.1 Generative Trackers

These methods adopt an appearance model to describe the
target observations. Here, the aim of tracking is to search
for the target location that has the most similar appear-
ance to the generative model. Examples of generative meth-
ods are eigentracker (Black and Jepson 1998), mean shift
tracker (Comaniciu et al. 2003), appearance model based
tracker (Jepson et al. 2003), context-aware tracker (Yang
et al. 2009), fragment-based tracker (Frag) (Adam et al.
2006), incremental tracker (IVT) (Ross et al. 2008), and
VTD tracker (Kwon and Lee 2010). In Black and Jepson
(1998), a view-based representation is used for tracking
rigid and articulated objects. This approach builds on and
extends work on eigenspace representations, robust estima-
tion techniques, and parameterized optical flow estimation.
The mean shift tracker (Comaniciu et al. 2003) is a popular
mode-finding method, which successfully copes with camera
motion, partial occlusions, clutter, and target scale variations.
In Jepson et al. (2003), a robust and adaptive appearance
model is learned for motion-based tracking of natural objects.
The model adapts to slowly changing object appearance, and
it maintains an acceptable measure of stability in the observed
image structure during tracking. Moreover, the context-aware
tracker (Yang et al. 2009) focuses on an object’s context
for robust visual tracking. Specifically, this method inte-
grates into the tracking process a set of auxiliary objects that
are automatically discovered in the video via data mining
techniques. Furthermore, the tracking method proposed in
Ross et al. (2008) incrementally learns a low-dimensional
subspace representation, and efficiently adapts to online

changes in target appearance. To adapt to variations in
appearance (e.g. due to changes in illumination and pose),
the appearance model can be dynamically updated. The Frag
tracker (Adam et al. 2006) aims to solve partial occlusion
with a representation based on histograms of local patches.
The tracking task is carried out by accumulating votes from
matching local patches using a template. However, this tem-
plate is not updated and, thus, it is not expected to han-
dle changes in object appearance that can be due to scale
and shape variations. In the IVT tracker (Ross et al. 2008),
an adaptive appearance model is constructed to account
for appearance variation due to rigid or limited deformable
motion. Although it has been shown to perform well when
target objects undergo lighting and pose variation, IVT is less
effective in handling heavy occlusion or non-rigid distortion
as a result of the adopted holistic appearance model. Finally,
the VTD tracker (Kwon and Lee 2010) effectively extends the
conventional particle filter framework with multiple motion
and observation models to account for appearance variation
caused by changes in pose, lighting, and scale as well as par-
tial occlusion. Nevertheless, as a result of the adopted gen-
erative representation scheme, this tracker is not equipped to
distinguish between the target and its context (background).

2.1.2 Discriminative Trackers

These methods formulate visual object tracking as a binary
classification problem, which seeks the target location that
can best separate the target from its background. Exam-
ples of discriminative methods are on-line boosting (OAB)
(Grabner et al. 2006), semi-online boosting (Grabner et al.
2008), ensemble tracking (Avidan 2005), co-training track-
ing (Liu et al. 2009), online multi-view forests for tracking
(Leistner et al. 2010), adaptive metric differential tracking
(Jiang et al. 2011) and online multiple instance learning
tracking (Babenko et al. 2009). In the OAB tracker (Grabner
et al. 2006), online AdaBoost is adopted to select useful fea-
tures for object tracking. Its performance is affected by back-
ground clutter, and the tracker can easily drift. The ensemble
tracker (Avidan 2005) formulates the tracking task as a pixel
based binary classification problem. Although this method
is able to differentiate between target and background, the
pixel-based representation is rather limited and thereby con-
strains its ability to handle heavy occlusion and clutter. In
the MIL tracker (Babenko et al. 2009), the multiple instance
learning method is extended to an online setting for object
tracking. While it is capable of reducing tracker drift, this
method is unable to handle large nonrigid shape deforma-
tion. In ensemble tracking (Avidan 2005), a feature vector
is constructed for every pixel in the reference image and an
adaptive ensemble of classifiers is trained to separate pixels
that belong to the object from pixels that belong to the back-
ground. In Collins and Liu (2003), a target confidence map
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is built by finding the most discriminative RGB color combi-
nation in each frame. Moreover, a hybrid approach that com-
bines a generative model and a discriminative classifier is
proposed in Yu et al. (2008) to capture appearance changes
and allow reacquisition of an object after total occlusion.
Global mode seeking can be used to detect and reinitial-
ize the tracked object after total occlusion (Yin and Collins
2008). Yet another approach uses image fusion to determine
the most discriminative appearance model and then a genera-
tive approach for dynamic target updates (Blasch and Kahler
2005).

2.2 Particle Filters for Object Tracking

Particle filters (also known as condensation or sequential
Monte Carlo models) were introduced to visual tracking
(Isard and Blake 1998). Since then and over the last decade,
it has become a popular tracking framework due primarily
to its excellent performance in the presence of nonlinear tar-
get motion and to flexibility to different object representa-
tions (Wu and Huang 2004). In general, when more particles
are sampled and a better target representation is constructed,
particle filter based tracking algorithms are more likely to
perform reliably in cluttered and noisy environments. How-
ever, the computational cost of particle filter trackers tends to
increase linearly with the number of particles. Consequently,
researchers have proposed various means of speeding up
the particle filter framework. In Yang et al. (2005), tracked
objects are described using color and edge orientation his-
togram features, and the observation likelihood is computed
in a coarse-to-fine manner, which allows the computation
to quickly focus on the more promising regions. In Khan
et al. (2004), subspace representations are used in a particle
filter for tracking. This tracker is made efficient by applying
Rao-Blackwellization to the subspace coefficients in the state
vector. In Zhou et al. (2004), the number of particle samples
is adjusted according to an adaptive noise component.

2.3 Sparse Representation for Object Tracking

Recently, sparse representation has been introduced to par-
ticle filter based object tracking and has yielded noteworthy
performance (Mei and Ling 2011; Mei et al. 2011; Liu et al.
2010; Li et al. 2011; Bao et al. 2012; Zhang et al. 2012a). In
Mei and Ling (2011), a tracking candidate is represented as a
sparse linear combination of object templates and trivial tem-
plates. For each particle, sparse representation is computed
by solving a constrained �1 minimization problem with non-
negativity constraints, thus, solving the inverse intensity pat-
tern problem during tracking. Although this method yields
good tracking performance, it comes at the computational
expense of multiple �1 minimization problems that are inde-
pendently solved. In fact, the computational cost grows linear

with the number of particle samples. In Mei et al. (2011), an
efficient L1 tracker with minimum error bound and occlusion
detection is proposed. The minimum error bound is quickly
calculated from a linear least squares equation, and serves
as a guide for particle resampling in a particle filter frame-
work. Without loss of precision during resampling, most of
the irrelevant samples are removed before solving the com-
putationally expensive �1 minimization function. In Liu et al.
(2010), dynamic group sparsity is integrated into the track-
ing problem and high dimensional image features are used to
improve tracking robustness. In Li et al. (2011), dimensional-
ity reduction and a customized orthogonal matching pursuit
algorithm are adopted to accelerate the L1 tracker (Mei and
Ling 2011). In Bao et al. (2012), APG based solution is used
to improve the L1 tracker (Mei and Ling 2011). In Zhang
et al. (2012a), low-rank sparse learning is adopted to consider
the correlations among particles for robust tracking. Inspired
by these works, we should solve two problems, which are
how to consider the correlations among particles and how to
make the tracker be fast. Therefore, we propose the S-MTT
tracking method.

2.4 Multi-Task Learning

Multi-task learning (MTL, Chen et al. 2009) has recently
received much attention in machine learning and computer
vision. It capitalizes on shared information between related
tasks to improve the performance of each individual task, and
it has been successfully applied to popular vision problems
such as image classification [(Yuan and Yan 2010) and image
annotation (Quattoni et al. 2009]. The underlying assumption
behind many MTL algorithms is that the tasks are related.
Thus, a key issue lies in how relationships between tasks
are incorporated in the learning framework. Inspired by the
above works, we want to improve computational efficiency
and capitalize on the interdependence among particle appear-
ances (for additional robustness in tracking). To make this
come true, we propose a multi-task sparse representation
method for robust object tracking.

3 Particle Filter

The particle filter (Doucet et al. 2001) is a Bayesian
sequential importance sampling technique, which recur-
sively approximates the posterior distribution using a finite
set of weighted samples for estimating the posterior distrib-
ution of state variables characterizing a dynamic system. It
provides a convenient framework for estimating and prop-
agating the posterior probability density function of state
variables regardless of the underlying distribution through
a sequence of prediction and update steps. Let st and yt

denote the state variable describing the parameters of an
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object at time t (e.g. location or motion parameters) and its
observation respectively. The prediction stage uses the prob-
abilistic system transition model p(st |st−1) to predict the
posterior distribution of st given all available observations
y1:t−1 = {y1, y2, . . . , yt−1} up to time t − 1 is computed in
Eq. (1).

p(st |y1:t−1) =
∫

p(st |st−1)p(st−1|y1:t−1)dst−1 (1)

At time t, the observation yt is available and the state vec-
tor is updated using Bayes rule, as in Eq. (2), where p(yt |st )

denotes the observation likelihood.

p(st |y1:t ) = p(yt |st )p(st |y1:t−1)

p(yt |y1:t−1)
(2)

In the particle filter framework, the posterior p(st |y1:t ) is
approximated by a finite set of n samples

{
si

t

}n
i=1 (called par-

ticles) with importance weights wi . The particle samples si
t

are drawn from an importance distribution q(st |s1:t−1, y1:t )
and the importance weights are updated according to Eq. (3).

wi
t = wi

t−1

p
(
yt |si

t

)
p

(
si

t |si
t−1

)
q(st |s1:t−1, y1:t )

(3)

To avoid degeneracy, particles are resampled according
to the importance weights so as to generate a set of equally
weighted particles. For simplicity, in the case of the boot-
strap filter (Doucet et al. 2001), we set q(st |s1:t−1, y1:t ) =
p(st |st−1), so that the weights are updated by the observation
likelihood p(yt |st ).

Particle filters have been used extensively in object track-
ing (Yilmaz et al. 2006). In this paper, we also employ parti-
cle filters to track the target object. Similar to Mei and Ling
(2011), we assume an affine motion model between consecu-
tive frames. Therefore, the state variable st consists of the six
parameters of the affine transformation (2D linear transfor-
mation and a 2D translation). By applying an affine transfor-
mation using st as parameters, we crop the region of interest
yt from the image and normalize it to the size of the target
templates in our dictionary. The state transition distribution
p(st |st−1) is modeled to be Gaussian with the dimensions
of st assumed independent. The observation model p(yt |st )

reflects the similarity between a target candidate (particle)
and dictionary templates. In this paper, p(yt |st ) is inversely
proportional to the reconstruction error obtained by linearly
representing yt using the dictionary of templates.

4 Structured Multi-Task Tracking (S-MTT)

In this section, we give a detailed description of our particle
filter based tracking method that makes use of structured
multi-task learning to represent particle samples.

4.1 Structured Multi-Task Representation of Particles

In the MTL framework, tasks that share dependencies in fea-
tures or learning parameters are jointly solved in order to
capitalize on their inherent relationships. Many works in this
domain have shown that MTL can be applied to classical
problems [(e.g. image annotation (Quattoni et al. 2009) and
image classification (Yuan and Yan 2010)] and outperform
state-of-the-art methods that resort to independent learning.
In this paper, we formulate object tracking as an MTL prob-
lem, where learning the representation of a particle is viewed
as a single task. Usually, particle representations in tracking
are computed separately (e.g. L1 tracker, Mei and Ling 2011).
In this paper, we show that by representing particles jointly
in an MTL setting, tracking performance and tracking speed
can be significantly improved.

In our particle filter based tracking method, particles are
randomly sampled around the current state of the tracked
object according to a zero-mean Gaussian distribution. At
instance t, we consider n particle samples, whose observa-
tions (pixel color values) in the t th frame are denoted in
matrix form as: X = [x1, x2, . . . , xn] , where each column is
a particle in R

d . In the noiseless case, each particle xi is repre-
sented as a linear combination zi of templates that form a dic-
tionary Dt = [d1, d2, . . . , dm] , such that X = Dt Z. The dic-
tionary columns comprise the templates that will be used to
represent each particle. These templates include visual obser-
vations of the tracked object (called target templates) possibly
under a variety of appearance changes. Since our representa-
tion is constructed at the pixel level, misalignment between
dictionary templates and particles might lead to degraded
performance. To alleviate this problem, one of two strategies
can be employed. (i) Dt can be constructed from a dense sam-
pling of the target object, which can also include transformed
versions of these samples. (ii) Columns of X can be aligned
to columns of Dt as in Peng et al. (2012) to solve the geomet-
ric transformation. In this paper, we employ the first strategy,
which leads to a larger m but a lower overall computational
cost. We denote Dt with a subscript because the dictionary
templates will be progressively updated to incorporate vari-
ations in object appearance due to changes in illumination,
viewpoint, etc. Our dictionary update scheme is adopted from
the work in Mei and Ling (2011), but for completeness, we
present its details in Sect. 4.4.

In many visual tracking scenarios, target objects are often
corrupted by noise or partially occluded. As in Mei and Ling
(2011), this noise can be modeled as sparse additive noise that
can take on large values anywhere in its support. Therefore,
in the presence of noise, we can still represent the particle
observations X as a linear combination of templates, where
the dictionary is augmented with trivial (or occlusion) tem-
plates Id (identity matrix of R

d×d), as shown in Eq. (4). The
representation error ei of particle i using dictionary Dt is the
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i th column in E. The nonzero entries of ei indicate the pixels
in xi that are corrupted or occluded. The nonzero support of
ei can be different among particles and is unknown a priori.

X = [Dt Id ]

[
Z
E

]
⇒ X = BC (4)

4.1.1 Imposing Joint Sparsity via �p,q Mixed-Norm

Because most particles are densely sampled around the cur-
rent target state, their representations with respect to Dt will
be sparse (few templates are required to represent them) and
similar to each other (the support of particle representations
is similar) in general. These two properties culminate in indi-
vidual particle representations (single tasks) being jointly
sparse. In other words, joint sparsity will encourage all par-
ticle representations to be individually sparse and share the
same (few) dictionary templates that reliably represent them.
This yields a more robust representation for the ensemble of
particles. In fact, joint sparsity has been recently employed
to address MTL problems (Quattoni et al. 2009; Yuan and
Yan 2010). A common technique to explicitly enforce joint
sparsity in MTL is the use of sparsity-inducing norms to reg-
ularize the parameters shared among the individual tasks. In
this paper, we investigate the use of convex �p,q mixed norms
(i.e. p ≥ 1 and q ≥ 1) to address the problem of MTL in
particle filter based tracking (denoted as MTT). Therefore,
we need to solve the convex optimization problem in Eq. (5),
where λ is a tradeoff parameter between reliable reconstruc-
tion and joint sparsity regularization.

min
C

1

2
‖X − BC‖2

F + λ‖C‖p,q (5)

Note that we define ‖C‖p,q as in Eq. (6), where ‖Ci‖p is
the �p norm of Ci and Ci is the i th row of matrix C.

‖C‖p,q =
(

m+d∑
i=1

(‖Ci‖p)
q

)1/q

(6)

As in Eq. (5), given a dictionary B, for the n tasks
X = [x1, x2, . . . , xn] (each column is a particle), we aim
to discover, across these n tasks, a few common templates
that are the most useful for particle representation. In this
setting, the constraint of joint sparsity across different tasks
is valuable since different tasks may favor different sparse
reconstruction coefficients, yet the joint sparsity enforces the
robustness in coefficient estimation. Moreover, joint sparsity
exploits correlations among different tasks to obtain better
generalization performance as compared to learning each
task individually. The goal of joint sparsity is achieved by
imposing an �p,q mixed-norm penalty on the reconstruction
coefficients. In fact, joint sparsity can be viewed as a global
form of structural regularization that influences all particle

representations together. In the next section, we extend the
MTT framework to enforce local structure as well.

4.1.2 Imposing Structure via Graph Regularization

Enforcing joint sparsity using the �p,q mixed-norm exploits
the global structure inherent to particle representations in any
given frame. However, in particle based MTT, some of the
tasks are often more closely related and more likely to share
common relevant covariates than other tasks. This induces
another layer of structure, which affects particle representa-
tions locally. Therefore, we expand the MTT framework to
consider pairwise structural correlations between particles
(e.g. spatial smoothness of representation) and denote the
novel framework as Structured Multi-Task Tracking abbre-
viated as S-MTT. The S-MTT formulation can be viewed
as a generalization of MTT, since local structural informa-
tion endows MTT with another layer of robustness in track-
ing. In fact, our experiments show that incorporating such
local structural information significantly improves the per-
formance of MTT.

We assume that the learned representations C can be
related through pairwise interactions, which are considered
local structural priors to C. In this paper, we use these struc-
tural priors to enforce spatial smoothness among particle
representations. In other words, particles that are spatially
located near each other in the same frame should have similar
representations. In general, higher order relationships can be
added to the S-MTT framework; however, such relationships
significantly increase the complexity of learning the optimal
C. Therefore, we restrict ourselves to pairwise relationships
that are defined as edges in a graph, whose nodes constitute
the particle representations (i.e. columns of C). As such, we
incorporate these local pairwise relationships into Eq. (5) by
adding a suitable graph regularization term.

To do this, we investigate the use of the well-known
and widely used, normalized graph smoothness regularizer,
which is a weighted sum of pairwise distances between the
normalized representations in C. The weight of each distance
term reflects how strongly the corresponding pairwise rela-
tionship should be enforced. Since the normalized version of
this regularizer has been shown to produce better and more
stable results in many learning problems, we prefer it over
its unnormalized counterpart (Zhu 2008).

In Eq. (7), we formalize the graph regularizer, denoted as
G(C).Here, we define a symmetric weight matrix W ∈ R

n×n+
that describes the similarity measure between every pair of
particle representations. In fact, W represents the weights
of all edges in the graph. Therefore, Wi j is the similarity
measure between the i th particle ci and the j th particle c j .

Here, we denote d̂i = ∑n
i=1 Wi j , the sum of the elements of

the i th row of W, and D̂ = diag(d̂1, d̂2, . . . , d̂n). In graph
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Fig. 2 (Color online) Schematic example of the L21 tracker. The rep-
resentation C of all particles X w.r.t. dictionary B (set of target and
occlusion templates) is learned by solving Eq. (9) with p = 2 and
q = 1. Notice that the columns of C are jointly sparse, i.e. a few (but

the same) dictionary templates are used to represent all the particles
together. The particle xi is selected among all other particles as the
tracking result, since xi is represented the best by object templates only

theory, D̂ is called the degree of the graph. In the last step,
we denote L = D̂ − W as the Laplacian of the graph and
T r(A) as the trace of matrix A.

G(C) = 1

2

n∑
i=1

n∑
j=1

Wi j

∥∥∥∥∥∥
ci√
d̂i

− c j√
d̂ j

∥∥∥∥∥∥
2

2

= T r
(

CL̂CT
)

where L̂ = D̂− 1
2 LD̂− 1

2 (7)

We define Wi j to decrease exponentially with the distance
between the spatial locations of the i th and j th particles, as
in Eq. (8). Here, we denote li as the 2D location of the center
of the i th particle in the current frame and δ as a smoothing
factor. The δ is the average value of all distances between
li and l j . Note that other similarity measures can be used to
describe Wi j including the PASCAL overlap score.1

Wi j = exp

(
−‖li − l j‖2

2

2δ2

)
(8)

Therefore, the particle representations C can be computed
by solving Eq. (9), which simply adds the graph regularizer
G(C) to Eq. (5). Here, L̂ is the normalized Laplacian matrix,
and λ1 and λ2 are two parameters that quantify the tradeoff
between local and global structural regularization.

min
C

1

2
‖X − BC‖2

F + λ1

2
T r(CL̂CT ) + λ2 ‖C‖p,q (9)

1 The score is the ratio of the intersection to the union of two bounding
boxes. In our case, it would be the ratio of the intersection of the ground
truth and the predicted tracks to their union in each frame.

4.2 Discussion

To encourage a sparse number of dictionary templates to be
selected for all particles, we restrict our choice of �p,q mixed
norms to the case of q=1, thus, ‖C‖p,1 = ∑m+d

i=1 ‖Ci‖p.

Among its convex options, we select three popular and widely
studied �p,1 norms: p ∈ {1, 2,∞}. The S-MTT objective
in Eq. (9) is composed of a convex2 quadratic term and a
non-smooth regularizer, and thus we conventionally adopt
the APG method (Tseng 2008) for optimization. The solu-
tion to Eq. (9) for these choices of p and q is described
in Sect. 4.3. Note that each choice of p yields a different
S-MTT tracker, which we will denote as the L∗

p1 tracker. To
discriminate between S-MTT and MTT trackers, we denote
the MTT tracker (i.e. when λ1 = 0 in Eq. (9)) using the �p,1

mixed norm as the L p1 tracker. In Sect. 5.6, we show that
L∗

p1 trackers can lead to significant improvement in track-
ing performance over L p1 trackers, in general. In Fig. 2, we
present an example of how the L21 tracker works. Given all
particles X (sampled around the tracked car) and based on a
dictionary B, we learn the representation matrix C by solving
Eq. (9). Note that smaller values are darker in color. Clearly,
columns of C are jointly sparse, i.e. a few (but the same)
dictionary templates are used to represent all the particles
together. Particle xi is chosen as the current tracking result
yt because it has the smallest reconstruction error w.r.t. to the
target templates Dt . Since particles x j and xk are misaligned

2 Since the degree matrix D̂ is diagonal and non-negative and since
the Laplacian L of any graph is positive semi-definite, the normalized
Laplacian L̂ is positive semi-definite. Thus, G(C) is convex in C.
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versions of the car, they are not represented well by Dt (i.e.
z j and zk have small values). This precludes the tracker from
drifting into the background.

As for Eq. (6), when p = q = 1, we note that

‖C‖1,1 =
m+d∑
i=1

‖Ci‖1 =
n∑

i=1

‖ci‖1, (10)

where ci and Ci represent the i th column and i th row in
C respectively. This equivalence property between rows and
columns (i.e. the sum of the �p norms of rows and that of
columns are the same) only occurs when p = 1. In this
case, MTT (Eq. (5)) and S-MTT (Eq. (9) when λ1 = 0)
become equivalent to Eq. (10). This optimization problem is
no longer an MTL problem, since the n representation tasks
are unrelated and are solved separately. Interestingly, Eq.
(10) is the same formulation used in the popular L1 tracker
(Mei and Ling 2011), which can be viewed as a special case
of our proposed family of S-MTT algorithms, namely the
L11 tracker. In fact, using the optimization technique in Sect.
4.3, we observe that our L11 implementation is two orders of
magnitude faster than the traditional L1 tracker.

min
c1,...,cn

n∑
j=1

(
1

2
‖x j − Bc j‖2

2 + λ2‖c j‖1

)
(11)

A detailed overview of the proposed S-MTT tracking
method is shown in Algorithm 1. Based on the previous state
st−1, we can use the importance sampling approach (Isard
and Blake 1998) to obtain new particles and crop the cor-
responding image patches to obtain their observations X.

Then, we learn their representations C by solving Eq. (9),
to be shown in Sect. 4.3. The particle that has the smallest

reconstruction error is selected to be the current tracking
result. Finally, the dictionary templates in Dt are updated
adaptively, to be shown in Sect. 4.4.

4.3 Solving Eq. (9)

In S-MTT, we need to solve Eq. (9) when q=1 and p ∈
{1, 2,∞}. Clearly, the overall objective is non-smooth due
to the non-smoothness of the �p,1 mixed norm. If straight-
forward first-order subgradient methods were used to solve
the S-MTT problem, only sublinear convergence

(
i.e. con-

vergence to an ε-accurate solution in O
( 1

ε2

)
iterations

)
is

guaranteed. To obtain a better convergence rate, we exploit
recent developments in non-smooth convex optimization.
The unpublished manuscript by Nesterov (2007) considers
the problem of minimizing a convex objective composed of a
smooth convex term and a “simple” non-smooth convex term.
Here, “simple” means that the proximal mapping3 of the non-
smooth term can be computed efficiently. In this case, an
APG method can be devised to solve the non-smooth convex
program with guaranteed quadratic convergence. Because of
its attractive convergence property, this APG method has
been extensively used to efficiently solve smooth convex
optimization problems with non-smooth norm regularizers
(e.g. MTL problems, Chen et al. 2009). It should be noted
that Beck and Teboulle (2009) independently proposed the
“ISTA” algorithm for solving linear inverse problem with
the same convergence rate. This work was further extended
to convex-concave optimization in Tseng (2008).

In general, APG iterates between updating the current rep-
resentation matrix C(k) and an aggregation matrix V(k). Each
APG iteration consists of two steps: (1) a generalized gradi-
ent mapping step that updates C(k) keeping V(k) fixed, and
(2) an aggregation step that updates V(k) by linearly combin-
ing C(k+1) and C(k). To initialize V(0) and C(0), we set them
to 0.

4.3.1 Gradient Mapping Step

Given the current estimate V(k), we obtain C(k+1) by solv-
ing Eq. (12), which is nothing but the proximal mapping of
λ̃‖Y‖p,1. Here, η is a small step parameter, and λ̃ = ηλ2.

C(k+1) = arg min
Y

1

2
‖Y − H‖2

2 + λ̃‖Y‖p,q , (12)

The temporal parameter H is an η step from the current
estimate V(k) along the negative gradient of the smooth term
in Eq. (9) and is calculated in Eq. (13).

3 The proximal mapping of a non-smooth convex function h(.) is
defined as: proxh(x) = arg minu

(
h(u) + 1

2 ‖u − x‖2
2

)
.
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H = V(k) − η∇(k)
s

= V(k) − η
[
BT BV(k) + λ1V(k)L̂ − BT X

]
. (13)

Taking joint sparsity into consideration and since q =
1, Eq. (12) decouples into (m + d) disjoint subproblems
(one for each row vector Ci ), as shown in Eq. (14), where Yi

and Hi denote the i th row of the matrix Y and H, respectively.

C(k+1)
i = arg min

Yi

1

2
‖Yi − Hi‖2

2 + λ̃ ‖Yi‖p , (14)

Each subproblem is the proximal mapping of the �p vector
norm, which is a variant of the vector projection problem
unto the �p ball. The solution to each subproblem and its
time complexity depends on p. In Sect. 4.3.3, we provide the
solution of this subproblem for popular �p norms, namely
p ∈ {1, 2,∞}.

4.3.2 Aggregation Step

In this step, we construct a linear combination of C(k) and
C(k+1) to update V(k+1) as follows:

V(k+1) = C(k+1) + αk+1 (1 − αk)

αk

(
C(k+1) − C(k)

)
, (15)

where αk is conventionally set to 2
k+3 . Our overall APG algo-

rithm is summarized in Algorithm 2. Note that convergence
is achieved when the relative change in solution or objective
function falls below a predefined tolerance.

4.3.3 Solving Eq. (14) for p ∈ {1, 2,∞}

The solution to Eq. (14) depends on the value of p. For p ∈
{1, 2,∞}, we show that this solution has a closed form. Note
that these solutions can be extended to �p norms beyond the
three that we consider here.

For p=1: The solution of Eq. (14) is equivalent to the
L1 tracker solution, as shown in Eq. (11). Here, the update
C(k+1)

i is computed in closed form in Eq. (16), where Sλ̃

is the soft-thresholding operator defined in scalar form as

Sλ̃(a) = sign(a) max(0, |a| − λ̃). This operator is applied
elementwise on Hi .

C(k+1)
i = arg min

Yi

1

2
‖Yi − Hi‖2

2 + λ̃ ‖Yi‖1

= Sλ̃(Hi ) (16)

For p=2: Following Chen et al. (2009), the update C(k+1)
i

is computed in closed form in Eq. (17).

C(k+1)
i = arg min

Yi

1

2
‖Yi − Hi‖2

2 + λ̃ ‖Yi‖2

= max

(
0, 1 − λ̃

‖Hi‖2

)
Hi (17)

For p= The update C(k+1)
i is computed via a projection

onto the �∞ ball that can be done by a simple sorting proce-
dure (Chen et al. 2009). In this case, the solution is given in
Eq. (18).

C(k+1)
i = max

(
0, 1 − λ̃

‖Hi‖1

)
a, (18)

where the j th element of vector a is defined as

a j = sign(Hi j ) min

⎛
⎝|Hi j |, 1

ĵ

⎛
⎝

ĵ∑
r=1

ur − λ̃

⎞
⎠

⎞
⎠

∀ j = 1, . . . , n.

The temporary parameters ur and ĵ are obtained as follows.
We set u j = |Ci j | ∀ j and sort these values in decreasing
order: u1 ≥ u2 ≥ · · · ≥ un . Then, we set ĵ = max{ j :∑ j

r=1 (ur − u j ) < λ̃}. Here, Ci j and Hi j denote the ele-
ment in the i th row and j th column of matrices C and H,

respectively.

4.3.4 Computational Complexity of Algorithm 2

The computational complexity of each iteration in Algorithm
2 is dominated by the gradient computation in Step 3 and the
update of C(k+1)

i in Step 4. Exploiting the structure of B, the
complexity of Step 3 is O(mnd), while that of Step 4 depends
on p. The latter complexity is O(n(m+d)) for p ∈ {1, 2} and
O(n(m + d)(1 + log n)) for p = ∞. Since d 
 m, the per-
frame complexity of the proposed S-MTT and MTT trackers

is O(mndε− 1
2 ), where the number of iterations is O(ε− 1

2 ) for
an ε-accurate solution. In comparison, the time complexity of
the L1 tracker (that is equivalent to our L11 tracker) is at least
O

(
nd2

)
. In our experiments, we observe that the L11 tracker

(that uses APG) is two orders of magnitude faster than the
L1 tracker (that solves n Lasso problems independently) in
general. For example, when m = 11, n = 200, and d = 32×
32, the average per-frame run-time for L11 and L1 are 1.1 and

123



376 Int J Comput Vis (2013) 101:367–383

179 s respectively. This is on par with the accelerated “real-
time” implementation of the L1 tracker in Li et al. (2011).

4.4 Dictionary Update

Target appearance remains the same only for a certain period
of time, but eventually the object templates in Dt are no longer
an accurate representation of the target’s appearance. A fixed
appearance template is prone to the tracking drift problem,
since it is incapable of handling appearance changes over
time. In this paper, our dictionary update scheme is adopted
from the work in Mei and Ling (2011). Each target tem-
plate in Dt is assigned a weight that is indicative of how
representative the template is. In fact, the more a template
is used to represent tracking results, the higher its weight
is. When Dt cannot represent some particles well (up to a
predefined threshold), the target template with the smallest
weight is replaced by the current tracking result. To initialize
the m target templates, we sample equal-sized patches at and
around the initial position of the target. In our experiments,
we shift the initial bounding box by 1–3 pixels in each direc-
tion, thus, resulting in m = 11 object templates as in Mei
and Ling (2011). All dictionary templates are normalized.

5 Experimental Results

In this section, we present extensive experimental results
that validate the effectiveness and efficiency of our proposed
S-MTT and MTT methods. We also conduct a thorough com-
parison between our proposed trackers and state-of-the-art
tracking methods where applicable.

The experimental results are organized as follows. In Sect.
5.1, we give an overview of the video dataset that we test
our S-MTT/MTT trackers. Section 5.2 enumerates the six
state-of-the-art trackers that we compare against. The imple-
mentation details of our proposed trackers are highlighted
in Sect. 5.3. In Sect. 5.4, we report the average runtime of
the S-MTT trackers with varying parameter settings, as well
as, compare it to the runtime of the L1 tracker. Qualitative
and quantitative comparisons between S-MTT/MTT and the
state-of-the-art trackers are made in Sects. 5.5 and 5.6 respec-
tively. The comparative results demonstrate that our method
provides more robust and accurate tracking results than the
state-of-the-art. Several videos for the tracking results can be
found in the supplementary material. The videos and codes
will be made available on our project website.4

4 https://sites.google.com/site/videoadsc/.

5.1 Datasets

To evaluate our proposed trackers, we compile a set of 15
challenging tracking sequences (denoted as car4, car11,
david indoor, sylv, trellis70, girl, coke11, faceocc2, shaking,
football, singer1, singer1(low frame rate), skating1, skat-
ing1(low frame rate), soccer. The video sequences car4,
car11, david indoor, sylv and trellis70 can be downloaded
from an online source.5 The video sequences girl, coke11
and faceocc2 can be downloaded from an online source.6 The
other video sequences shaking, football, singer1, singer1(low
frame rate), skating1, skating1(low frame rate) and soccer
can be downloaded from an online source.7 These videos are
recorded in indoor and outdoor environments and include
most challenging factors in visual tracking: complex back-
ground, moving camera, fast movement, large variation in
pose and scale, occlusion, as well as shape deformation and
distortion (see Figs. 3, 4).

5.2 Baselines

We compared the proposed algorithms (MTT and S-MTT)
with six state-of-the-art visual trackers: VTD tracker (Kwon
and Lee 2010), L1 tracker (Mei and Ling 2011), IVT
tracker (Ross et al. 2008), MIL tracker (Babenko et al. 2009),
Fragments-based tracker (Frag) (Adam et al. 2006), and OAB
tracker (Grabner et al. 2006). We use the publicly available
source codes or binaries provided by the authors themselves
with the same initialization and parameter settings to gen-
erate the comparative results. In our experiments, our pro-
posed tracking methods use the same parameters for all the
test sequences.

5.3 Implementation Details

All our experiments are done using MATLAB R2008b
on a 2.66 GHZ Intel Core2 Duo PC with 6 GB RAM.
The template size d is set to half the size of the tar-
get initialization in the first frame. Usually, d is in the
order of several hundreds of pixels. For all experiments,
we model p (st |st−1) ∼ N (0, diag(σ )), where σ =
[0.005, 0.0005, 0.0005, 0.005, 4, 4]T . We set the number of
particles n = 400, the total number of target templates
m = 11 [The templates are obtained with 1–3 pixels shift
around the target position as the same as the L1 tracker
(Mei and Ling 2011)], and the number of occlusion tem-
plates to d. In Algorithm 2, we set η = 0.01, λ1 = 1, λ̃ (by
cross-validation) to {0.01, 0.005, 0.2} for L21, L11 and L∞1

respectively, and λ̃ to {0.005, 0.001, 0.2} for L∗
21, L∗

11 and

5 http://www.cs.toronto.edu/~dross/ivt/.
6 http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml.
7 http://cv.snu.ac.kr/research/~vtd/.
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Table 1 Average per-frame runtime (in seconds) of 4 trackers (L∗
21, L∗∞1, L∗

11, and L1) with varying template sizes d and number of particles n

n d

16 × 16 32 × 32 48 × 48 64 × 64

L1 L∗
21 L∗∞1 L∗

11 L1 L∗
21 L∗∞1 L∗

11 L1 L∗
21 L∗∞1 L∗

11 L1 L∗
21 L∗∞1 L∗

11

100 2.07 0.32 0.15 0.11 84.5 0.41 0.78 0.72 601.3 2.62 2.01 2.36 2230.7 8.88 5.97 9.50

200 3.91 0.33 0.53 0.21 178.9 1.46 1.98 1.55 1238.3 5.56 3.22 3.85 4536.0 18.18 9.37 13.99

300 5.79 0.73 1.10 0.44 256.4 2.71 2.90 2.23 1969.9 5.04 5.95 6.98 6717.2 23.96 37.87 28.99

400 7.90 1.21 1.47 0.55 340.5 4.69 5.39 2.74 2665.2 11.45 15.32 4.99 8881.8 23.26 39.10 31.28

500 11.39 1.61 1.85 0.62 422.5 4.85 7.26 3.19 3158.6 19.38 20.30 8.83 1100.3 32.17 46.53 37.07

600 12.05 2.24 2.71 0.76 497.1 5.97 8.34 4.57 3915.9 21.04 25.32 8.57 1314.7 40.08 53.79 41.71

700 13.58 2.96 3.62 0.99 572.3 6.17 7.45 5.03 4429.9 22.36 35.19 10.96 1533.2 48.86 63.51 49.19

800 15.89 3.58 4.35 1.08 659.4 7.62 10.37 5.77 5080.4 23.82 27.61 13.16 1889.9 55.99 72.11 54.88

L∗∞1 respectively. Each tracker uses the same parameters for
all video sequences. In all cases, the initial position of the
target is selected manually.

5.4 Computational Cost

The popular L1 tracker that uses a similar sparse representa-
tion model for particle appearance has shown to achieve bet-
ter tracking performance than state-of-the-art trackers (Mei
and Ling 2011). However, its computational cost grows pro-
portionally as the number of particle samples n and template
size d increase. Due to the inherent similarity between the
L1 tracker and the proposed trackers (MTT and S-MTT),
we compare their average runtimes in Table 1. S-MTT and
MTT has very similar computational costs, so for simplic-
ity, we just report the runtime results of S-MTT (L∗

21, L∗∞1,

L∗
11) and L1 in Table 1. Based on the results, it is clear that

our trackers are much more efficient than the L1 tracker.
For example, when m = 11, n = 400, and d = 32 × 32,

the average per-frame run-time for L∗
21, L∗∞1, L∗

11, and L1

trackers are 4.69, 5.39, 2.74, and 340.5 s, respectively. Inter-
estingly, our L∗

11 tracker, which is similar to L1 tracking
but solved using the APG method, is about 120 times faster
than the L1 tracker . As we know, increasing n and d will
improve tracking performance. For L1 tracking, the runtime
cost increases dramatically with both n and d; however, this
increase is much more reasonable with our trackers. Note
that the computational complexity of S-MTT is derived in
Sect. 4.3.4.

5.5 Qualitative Comparison

The car4 sequence is captured in an open road scenario.
Tracking results at frames {20, 186, 235, 305, 466, 641}
for all 12 methods are shown in Fig. 3a. The different track-
ing methods are color-coded. OAB, Frag, and VTD start to
drift from the target at frame 186, while MIL starts to show

some target drifting at frame 200 and finally loses the target
at frame 300. IVT and L1 track the target quite well. The
target is successfully tracked throughout the entire sequence
by our L11, L21, L∞1, L∗

11, L∗
21, and L∗∞1 methods.

In the car11 sequence, a car is driven into a very dark envi-
ronment, while being videotaped from another moving car.
Tracking results for frames {10, 110, 200, 250, 309, 393} are
presented in Fig. 3b. Frag starts to drift around frame 60. Due
to changes in lighting, MIL starts to undergo target drift from
frame 120. OAB and L1 methods start to fail in frame 284.
IVT and VTD can track the target through the whole video
sequence; however, these tracks are not as robust or accurate
as the proposed L21, L∞1, L∗

21 and L∗∞1 trackers.
The coke11 sequence contains frequent occlusions and

fast motion, which cause motion blur. The S-MTT, MTT,
L1, OAB, and MIL trackers can track the target accurately
almost throughout the entire sequence. The other trackers
fails due to pose change and occlusion as shown in Fig. 3c.

In the david sequence, a moving face is tracked. The track-
ing results at frames {354, 423, 465, 502, 588, 760} are shown
in Fig. 3d. Frag and VTD fail around frames 423 and 465
respectively. OAB starts to drift at frame 550. MIL and L1

adequately track the face, but experience target drift, espe-
cially at frames 690 and 500, respectively. The IVT, S-MTT
and MTT methods track the moving face accurately.

In the faceocc sequence, a moving face is tracked, which
can evaluate the robustness to occlusions of different meth-
ods. The tracking results at frames {100, 231, 314, 474, 571,
865} are shown in Fig. 3e. Because there is only occlusion
by a book and no changes in illumination and motion, most
of the methods can track the face accurately except OAB and
MIL, which encounter minor drift.

Results on the faceocc2 sequence are shown in Fig. 3f.
Most trackers start drifting from the man’s face when it is
almost fully occluded by the book. Because the L1, MTT
and S-MTT methods explicitly handle partial occlusions, and
update the object dictionary progressively, they handle the
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Fig. 3 (Color online) Tracking results of 12 trackers on 7 video sequences denoted with different colors. Frame numbers are overlayed in red. See
text for details

appearance changes in this sequence very well and continue
tracking the target during and after the occlusion.

The football sequence includes severe background clutter,
which is similar in appearance to the tracked target. For the
other methods, tracking drifts from the intended object (hel-
met) to other similar looking objects in the vicinity. This
is especially the case when the two football players col-
lide at frame 362 (refer to Fig. 3g). The proposed trackers
(such asL21, L∞1 and L∗

21) overcome this problem and suc-
cessfully track the target because they exploit structural rela-
tionships between particle representations.

Figure 4a shows tracking results for the girl sequence.
Performance on this sequence exemplifies the robustness of

MTT to occlusion (complete occlusion of the girl’s face as she
swivels in the chair) and large pose change (the face under-
goes significant 3D rotation). S-MTT, MTT and L1 are capa-
ble of tracking the target during the entire sequence. Other
trackers experience drift at different instances: Frag at frame
248, OAB and IVT at frame 436, and VTD at frame 477.

In the onelsr sequence, the background color is similar to
the color of the woman’s trousers, and the man’s shirt and
pants have a similar color to the woman’s coat. In addition,
the woman undergoes partial occlusion when the man in the
scene walks behind her. Some results are shown in Fig. 4b.
While tracking the woman, IVT, MIL, Frag, OAB, and VTD
start tracking the man when the woman is partially occluded

123



Int J Comput Vis (2013) 101:367–383 379

(a
)

gi
rl

(b
)

on
el

sr
(c

)
sh

ak
in

g
(d

)
si

ng
er

1
(e

)
sk

at
in

g1
(f

)
so

cc
er

(g
)

sy
lv

(h
)

tr
el

lis
70

Fig. 4 (Color online) Tracking results of 12 trackers on 8 video sequences delineated by different colors. Frame numbers are overlayed in red. See
text for details

around frame 200, and are unable to recover from this fail-
ure after that. The L1 tracker tracks the woman quite well.
Compared with other trackers, our L∗

21, L∗∞1, L21 and L∞1

trackers are more robust to the occlusion. In addition, our
L∗

21, L∗∞1, L21 and L∞1 trackers are much better than L1,

L11, and L∗
11, which demonstrate that imposing joint sparsity

between particle representations is helpful for robust object
tracking.

In the shaking sequence, the tracked object is subject to
changes in illumination and pose. While the stage lighting
condition is drastically changed, and the pose of the object is
severely varied due to head shaking, our method successfully
tracks the object (refer to Fig. 4c). Compared with L11, L∗

11
and L1, L21, L∞1, L∗

21 and L∗∞1 perform better because
their joint sparse particle representation is more robust to
rapid changes. Other methods (OAB, IVT, L1, and Frag) fail
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to track the object when these changes occur. VTD and MIL
methods can track the object quite well except for some errors
around frame 60.

The singer1(l) sequence contains abrupt object motion
with significant illumination and scale changes, which cause
most of the trackers to drift as shown in Fig. 4d. S-MTT, MTT
and VTD handle these changes well. Compared with MTT
(L21, L∞1 and L11), S-MTT (L∗

21, L∗∞1 and L∗
11) obtains

much better performance, which shows that harnessing local
structure between particle representations is useful for object
tracking.

In the skatingl sequence, there are abrupt object motion,
severe illumination and scale changes, viewpoint changes
and occlusions, which lead most of the trackers to fail. Our
proposed trackers (MTT and S-MTT) and VTD handle these
changes well as shown in Fig. 4e. Note that, in the 353th
frame in the Fig. 4e, our proposed trackers are slightly better
than the VTD method, which is the most recent state-of-the-
art tracking method that can cope with abrupt motion and
appearance changes.

Results on the soccer sequence are shown in Fig. 4f. They
demonstrate how our proposed method outperforms most
of the state-of-the-art trackers when the target is severely
occluded by other objects. The L∗

21, L∗∞1, L∗
11, L21 and L11

methods accurately track the player’s face despite scale and
pose changes as well as occlusion/noise from the confetti
raining around him. Other methods (IVT, L1, L∞1, OAB,
MIL, and Frag) fail to track the object reliably. The VTD
tracker can track the target in this sequence quite well.

Results on the sylv sequence are shown in Fig. 4g. In this
sequence, a stuffed animal is being moved around, thus, lead-
ing to challenging pose, lighting, and scale changes. IVT fails
around frame 623 as a result of a combination of pose and
illumination change. The rest of the trackers are able to track
the target throughout the sequence, although the Frag, MIL,
VTD, OAB, L11 and L1 encounter minor drift from the target.

The trellis70 sequence is captured in an outdoor environ-
ment where lighting conditions change drastically. The video
is acquired when a person walks underneath a trellis covered
in vines. As shown in Fig. 4h, the cast shadow changes the
appearance of the target face significantly. Furthermore, the
combined effects of pose and lighting variations along with a
low frame rate make visual tracking extremely difficult. Nev-
ertheless, the L21, L∞1, L∗

21 and L∗∞1 trackers can follow
the target accurately and robustly, while the other tracking
methods perform below par in this case. VTD and Frag fail
around frame 185. L1 starts drifting at frame 287, while MIL
and OAB fail at frame 323. IVT starts drifting at frame 330.

5.6 Quantitative Comparison

To give a quantitative comparison between the 12 trackers,
we obtain ground truth for all 15 sequences. Here, we note

that ground truth for some of the video sequences is readily
available. We manually label the other sequences. Tracker
performance is evaluated according to the average per-frame
distance (in pixels) between the center of the tracking result
and that of ground truth as used in Babenko et al. (2009) and
Mei and Ling (2011). Clearly, this distance8 should be small.

In Fig. 5, we plot the distance of each tracker over time
on 2 sequences for simplicity. From this figure, we see that
MTT and S-MTT trackers consistently produce a smaller
distance than other trackers in general. This implies that MTT
and S-MTT can accurately track the target despite severe
occlusions, pose variations, illumination changes, and abrupt
motions.

In Table 2, we show the average center distance for each
tracker over the 15 sequences. It is clear that the S-MTT and
MTT methods are consistently better than the other trackers
in most sequences. Among the MTT methods, L21 outper-
forms L11 and L∞1 in general. For S-MTT method, L∗

21 are
much better than L∗

11 and L∗∞1. In fact, except for the faceocc,
football, shaking and skatingl sequences, in which we obtain
similar results as IVT and VTD, the L21 and L∗

21 trackers
do outperform the other methods. Frag and L1 perform well
under partial occlusion but tend to fail under severe illumina-
tion and pose changes. The IVT tracker is hardly affected by
changes in appearance except those due to illumination. OAB
is effected by background clutter and easily drifts from the
target. MIL performs well except when severe illumination
changes force the tracker to drift into the background. VTD
tends to be robust against illumination change, but it cannot
handle severe occlusions and viewpoint changes adequately.

Now, we compare the performance of S-MTT and MTT
methods. Based on the results in Table 2, L21 and L∞1 out-
perform L11. This is due to the fact that the L11 tracker
learns particle representations separately, while L21 and
L∞1 capitalize on dependencies between different particles
to obtain more robust jointly sparse representations. These
results demonstrate that it is useful for visual tracking to
impose joint sparsity among particle representations. For
S-MTT, the performance of the corresponding three trackers
(L∗

21, L∗∞1 and L∗
11) has similar tendencies as MTT. How-

ever, S-MTT is reasonably better than MTT. This validates
the impact of using local graph structure to regularize particle
representations and yield more robust object tracking.

In addition, we compare MTT and S-MTT with the L1

tracker, which is the most related tracker to ours and has
shown state-of-the-art performance (Mei and Ling 2011).
Based on the results in Table 2, MTT (L21 and L∞1) and
S-MTT (L∗

21 and L∗∞1) outperform the L1 tracker. That is
because L1 tracking represents particles separately, while the

8 This dissimilarity measure is used often to compare tracking perfor-
mance. Other measures can be used, including the PASCAL overlap
score.
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Fig. 5 (Color online) Center distance (in pixels) between tracking result and ground truth over time for 12 trackers applied to 15 video sequences

proposed trackers capitalize on dependencies between dif-
ferent particle representations to obtain a more robust jointly
sparse representation. Our results demonstrate that it is useful

for visual tracking to mine particle relationships. L∗
11 outper-

forms the L11 and L1 trackers, since the L∗
11 tracker makes

use of the local graph structure. Moreover, in theory, the L1
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Table 2 (Color online) The mean distances of 12 different trackers on 15 different video sequences

On average, the proposed trackers (L∗
21, L∗∞1, L∗

11, L21, L∞1, and L11 ) outperform the other 6 state-of-the-art trackers. For each sequence, the
smallest and second smallest distances are denoted in red and blue respectively

tracker is a special case of our MTT framework (refer to
Eq. (11)), and it should produce the same results as L11.

However, this is not reflected in our empirical results due to
three reasons. (a) The L1 tracker is forced to adopt a smaller
template size (d = 12 × 15) due to its high computational
cost O(nd2). A larger d leads to a richer representation and
improved tracking performance. As mentioned earlier, MTT
methods set d to half the size of the initial bounding box,
which is generally more than 600 pixels. (b) In the public
MATLAB implementation of L1, the dictionary weights are
used not only to update the target templates but also to mul-
tiply the templates themselves, which leads to an artificially
sparser representation. For L11, the weights are only used to
update the target templates. In addition, MTT uses a more
efficient solver (refer to Sect. 4.3.3) to learn particle repre-
sentations, so L11 can reach a better solution than L1 for
the same stopping criterion at every frame. (c) Since the L1

and L11 trackers both adopt the particle filter framework,
their tracking results for the same sequence can be differ-
ent because the particles that are randomly sampled at each
frame tend to be different.

6 Conclusion

In this paper, we formulate particle filter based tracking as
a structured multi-task sparse learning problem, where par-
ticle representations, regularized by a sparsity-inducing �p,1

mixed norm and a local graph term, are learned jointly using
an efficient APG method. We show that the popular L1

tracker (Mei and Ling 2011) is a special case of our pro-
posed formulation. Also, we extensively analyze the perfor-
mance of our tracking paradigm on challenging real-world
video sequences and show it outperforming six state-of-the-
art tracking methods.
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