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Abstract Semantic segmentation has recently witnessed rapid progress, but existing methods only focus on identifying

objects or instances. In this work, we aim to address the task of semantic understanding of scenes with deep learning.

Different from many existing methods, our method focuses on putting forward some techniques to improve the existing

algorithms, rather than to propose a whole new framework. Objectness enhancement is the first effective technique. It

exploits the detection module to produce object region proposals with category probability, and these regions are used to

weight the parsing feature map directly. “Extra background” category, as a specific category, is often attached to the category

space for improving parsing result in semantic and instance segmentation tasks. In scene parsing tasks, extra background

category is still beneficial to improve the model in training. However, some pixels may be assigned into this nonexistent

category in inference. Black-hole filling technique is proposed to avoid the incorrect classification. For verifying these two

techniques, we integrate them into a parsing framework for generating parsing result. We call this unified framework as

Objectness Enhancement Network (OENet). Compared with previous work, our proposed OENet system effectively improves

the performance over the original model on SceneParse150 scene parsing dataset, reaching 38.4 mIoU (mean intersection-

over-union) and 77.9% accuracy in the validation set without assembling multiple models. Its effectiveness is also verified

in the Cityscapes dataset.

Keywords objectness region enhancement, black-hole filling, scene parsing, instance enhancement, objectness region

proposal

1 Introduction

Scene parsing[1-2], or recognizing and segmenting

objects and stuffs in an image, is one of the key prob-

lems in scene understanding. As an important com-

puter vision task, it can affect every aspect of our lives,

such as content-aware search[3-5], scene understanding,

autopilot[6], robot navigation[4] and so on.

Nowadays, given a visual scene of a dining room,

a service robot equipped for providing services to cus-

tomers can accurately recognize the scene category and

locate its own coordinates. However, to freely navi-

gate in the scene and manipulate the objects inside,

the robot needs far more information to comprehend.

It needs to recognize and localize not only the notable

objects like a table, chair and person, but also small

objects like a dish, pepper pot or candy box, and their

parts like the handle of a cup or the surface of a table, to

allow a potential interaction. It is also very important
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for the robot to identify the stuffs like a wall, floor, and

door for spatial navigation. Recently, tremendous pro-

gresses in semantic segmentation have been made based

on the framework of fully convolutional neural networks

(FCN)[7]. By reusing the computed feature maps for

an image, FCN avoids redundant re-computation for

classifying individual pixels in the image. FCN be-

comes the de facto approach for dense prediction, and

many methods were proposed for further improving this

framework, such as DeepLab[1] and Adelaide-Context

model[8].

However, the pixel-wise prediction in FCN[7] is

achieved by roughing up sampling convolutional fea-

ture maps via large-span bilinear interpolation. Hence,

the boundaries of objects are oversmoothed in the seg-

mentation, and the fixed-size receptive fields possibly

make foreground objects overwhelmed by a large area

of diverse backgrounds and stuffs, especially those of

smaller objects. For semantic and instance segmenta-

tion tasks, which concentrate on separating the objects

from their background, this is not a big problem. Even

in the complex MSCOCO[9] dataset, most objects can

be easily found and identified. This is primarily be-

cause the scale of an object is usually large enough

to find the object easily in the object-based segmen-

tation task. Meanwhile, we do not have to concern

about what the background is. Based on these two

points, the difficulty of the segmentation task will be

reduced. However, in the scene parsing task, complex

scene makes most objects very small, and the number

and the type of the objects are big and various respec-

tively. Moreover, scene parsing not only segments ob-

jects from the scene, but also needs to identify what the

backgrounds and stuffs are. Therefore, we need a way

to find out the objects from the scene, especially those

smaller or ambiguous objects. Several researchers[10-11]

proposed using detection to help object segmentation.

These methods first use detection to generate region

proposals, and then run segmentation in these regions.

Detection-based methods are beneficial to recall some

missing objects. These objects are difficult to identify

in the original segmentation network. However, in scene

parsing task, the segmentation in region proposals can

make some background pixels incorrectly identified as

an object. Moreover, it still needs an extra network to

deal with the backgrounds and stuffs, because the re-

gion proposals cannot cover all the pixels, and they do

not care what the backgrounds and stuffs are. In con-

trast, we do not parse the scene in the region proposals,

but use the region proposals to enhance local features

over parsing results. Specifically, we only weight the

specific feature channel, which is equal to the index

of the predicted category corresponding to an object.

Furthermore, we utilize the internal area of the object

contour as the object mask to replace the enclosing rect-

angle to achieve enhancement. This strategy avoids the

objectness enhancement being applied in the regions of

stuffs or backgrounds. We think only weighting the

specified feature channel related to the target object

can minimize the number of false matches. Even if

the background area of the specified feature channel

is weighted by some algorithm, the probabilities of the

background pixels are not very high. The main reason

is that the initial output probabilities of these pixels

are very small. The highest probability of these areas

will appear in the feature channel, which is closer to the

real category. In order to understand this idea better,

we visualize this method in Fig.1.

Person
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Region Proposal

Light
Regions

Channel 84: Light

Box Enhanced
Parsing
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rg
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Channel 14: Person

(a) (b) (c)

Fig.1. Objectness region enhancement. (a) Output of the OPN
(objectness proposal network), which produces region proposals
with category information. (b) Region enhancement over diffe-
rent feature map channels. (c) Final parsing result. Note that
the region enhancement happens only when the index of the fea-
ture map is equal to the category index of the region proposal.

On the other hand, in both the detection and the

segmentation tasks, some regions are hard to be deter-

mined what they are. Many algorithms[1,7,12-14] add

an extra background category 1○ to collect the nega-

tive samples or marginal samples in training. This

policy helps to train a better model, but it leads to

that some pixels are assigned to the extra background

classes in inference. This is not a problem for seman-

tic and instance segmentation tasks, and at least it is

1○We define the category which is used for improving the model in training as “extra background” category, and define the
categories (such as the sky, ground, wall and grass) which are existing in the original category space as “background” categories.
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not obvious in the visual view. Because semantic seg-

mentation and instance segmentation focus on recog-

nizing the specified categories, all the other pixels can

be considered as “extra background”. In other words,

the “extra background” category is a real existing cate-

gory, and all non-target areas will be identified as extra

background. In contrast, we must address each pixel

and assign a category to them in scene parsing. To add

an extra background category in training, some pix-

els may be considered as the extra background in the

inference, even using CRF (conditional random field)

to optimize the parsing results. Normally, the “extra

background” category is usually encoded as “0”. Un-

der this setting, the areas being assigned to the “extra

background” look like black holes in the visual view.

Therefore, we call this phenomenon as “black-hole”. To

tackle this problem, we use the category which has the

second high classification probability to replace the ex-

tra background category. We think this category may

be closer to the true category. We call this simple al-

gorithm as “black-hold filling”.

In order to achieve these two strategies for scene

parsing, we build an unified framework based on the

Deeplab[1] model. Our model consists of three subnet-

works as shown in Fig.2. The first one is a feature ex-

traction network (FEN) used to produce convolutional

feature maps. The second one is an objectness proposal

network (OPN) used to locate and recognize objects in

the image. And the last one is an objectness enhance-

ment network (OEN) used to optimize the pixel-level

prediction for further semantic segmentation. With

this framework, we boost the performance of parsing

with detection technique and black-hole filling stra-

tegy. Specifically, the detection technique is employed

for box-level instance enhancement and mask-level in-

stance enhancement. After instance enhancement, the

fully-connected CRF technique is utilized to refine lo-

calized region and recover object boundaries. Finally, a

black-hole filling strategy is used to deal with the prob-

lem of allocating objects/stuffs as “extra background”.

Our main contributions can be summarized in three

aspects.

1) We propose a unified framework to address the

task of scene parsing. Benefiting from the modular de-

sign, our improved algorithm can be considered as a

series of post-processing methods, and the basic CNN

component can be easily replaced by other contempo-

rary deep models for improving overall performance.

2) We propose an objectness enhancement method

to recall the ignored objects that are hard to be recog-

nized in the standard scene parsing networks.

3) A “black-hole” filling technique is designed to

handle the problem of those pixels beyond the category

space.

2 Related Work

2.1 Semantic Scene Parsing

With the success of convolutional neural net-

work for image classification[15], there is grow-

Input
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Fig.2. Overall architecture of the OENet framework.
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ing interest for semantic pixel-wise labeling using

CNN with dense output, such as the fully convo-

lutional network[7], DilatedNet[1], multi-task cascade

network[10], encoder-decoder SegNet[16], and deconvo-

lutional neural networks[17]. Most of these methods are

corresponding to general object parsing[1,18] and hu-

man parsing[19-23]. Instead of the segment object from

scenes on pixel-wise, we solve the scene parsing problem

which needs to capture and identify both the objects

and the stuffs. This is an exceedingly challenging prob-

lem, especially when the scene includes plenty of objects

in complicated environments. Zhou et al.[2,24] did many

studies in this field, and they released two datasets:

SceneParse150[2] and Places[24]. Many objects seman-

tic segmentation methods are used to handle the scene

parsing task. However, in pixel-wise prediction tasks,

some of the smaller objects are possibly overwhelmed

in the diverse background areas due to the gradually

pooled receptive fields. In order to solve this problem,

Chen et al.[1] developed a powerful “atrous convolu-

tion” to explicitly control the resolution and effectively

enlarge the field of view of filters to incorporate larger

context. Lin et al.[8] explored “patch-patch” context

and “patch-background” context in deep CNN to im-

prove semantic segmentation.

2.2 Region Representations and Region

Proposals

Most traditional studies use hand-crafted features

for region-based representation. More recent stu-

dies instead use the last convolutional feature map

of CNN[25] as feature representations[26-28]. These

representations can free-form represent the shape of

a region[26-30] or simply represent the bounding box

around the region[26]. Furthermore, regions can be

cropped out from the image before being fed to

the network[27-28] or one can create region repre-

sentations from a convolutional layer[26,29-30], termed

region-of-interest pooling[12,31] or convolutional feature

masking[26].

CNN representations become more powerful when

further trained for target tasks. Adopting region pro-

posal methods for producing multiple instance propo-

sals, RCNN[27] achieved a milestone performance. Fol-

lowing this work, many pioneering object detection

methods[12-14,27,31] were proposed to predict bounding

boxes and categories simultaneously, which are imple-

mented with CNN-based deep learning architecture. In

SPPnet[31] and Fast RCNN[12], the convolutional layers

of CNN are shared on the entire image for fast compu-

tation. Faster RCNN[13-14] further exploits the shared

convolutional features to extract region proposals.

The output of the detection system usually is a

set of bounding boxes that contain a lot of back-

ground pixels. Using the system to help segmenta-

tion may cause erroneous judgement in overlapping ar-

eas. Mask-level instance region proposals can be ad-

dressed based on the detection philosophy, such as R-

CNN[12-14], SDS[28]. Mask layer[26] is often used to

share convolutional features among mask-level propo-

sals. Many methods[11,26-28] rely on computationally

expensive mask proposal methods. DeepMask[11] learns

segmentation candidates in one second, but its accuracy

is yet to be assessed. Category-wise semantic segmen-

tation FCN[7] enables per-pixel regression in a fully-

convolution form, but cannot distinguish instances from

the same category. [32] improves FCN, but is also pow-

erless to distinguish instances. Dai et al.[10] proposed a

multi-task network to generate mask-level region pro-

posals and segment objects, but the network does not

handle the stuff that is an important part of scene pars-

ing. [33] demonstrates that, as a higher order potential,

object detections can be included in a CRF embedded

within a deep network. By an end-to-end trainable

incorporated CRF, the energy formulation can reject

erroneous detections. However, due to the integrated

CRF and detection network, it is difficult to improve

performance through replacing a better detector. In

this paper, we use mask-level instance enhancement

to reduce the recognition errors. The modular design

methodology allows to improve the overall performance

by upgrading components.

In this paper, we also share convolutional features

to speed up producing features and proposals for our

scene parsing systems, like [12-13, 31]. Some region pro-

posal methods[13-14] are used to generate box-level and

mask-level instances. Different from these region-based

semantic segmentation methods, our method makes use

of the category-wise region proposal to enhance the

pixel-wise prediction. Category-wise convolutional fea-

ture map and category-wise region proposal are assem-

bled to form a more robust pixel-level feature map,

which compensates the weak response objectness in

vanilla semantic segmentation task.

3 Methods

With the development of deep learning, using

CNN for semantic segmentation has been shown to
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Fig.3. Detailed architecture of the proposed OENet.

be easy and successfully dealt in fully convolutional

fashion[1,7,17]. Inspired by “Atrous” scheme of [1], we

modify the ResNet101 model (released in [25]) as our

baseline model. We replace the 1 000-way ImageNet

classifier in the last layer with a 151-way Softmax clas-

sifier (150 semantic classes and one extra background

class). The loss is the sum of cross-entropy for each spa-

tial position in the CNN output map. The FEN (feature

extraction network) is fine-tuned on the SceneParse150

dataset. Fig.3 show the detailed architecture of the

proposed OENet. OENet is composed of three parts.

The whole image is first fed into several convolutional

layers to generate feature maps, and this network is

a ResNet101-like structure and modified by multi-level

multi-Scale image representations (see Subsection 3.1).

Then these feature maps are sent to objectness pro-

posal network (branch 2) for locating and recogniz-

ing objects. Each image can contain multiple objects,

and each object includes the prediction of object posi-

tion and category (see Subsection 3.2). Next, the fea-

tures along with the object proposals are passed into a

sub-network (box-level instance enhancement network

(branch 1) or mask-level instance enhancement network

(branch 3)) to generate the confidences enhanced fea-

ture maps (see Subsection 3.3). Finally, fully-connected

CRF and black-hole filling strategies are employed to

optimize the parsing results (see Subsection 3.3.4 and

Subsection 3.4).

3.1 Feature Extraction Network

CNN has shown a remarkable ability to implicitly

represent the scale of an object by training on the im-

ages with diverse scales. Besides, explicitly considering

multi-scale in design can improve the recognition per-

formance for both large and small objects. We expand

our baseline model to a multi-scale version through in-

tegrating a multi-level multi-scale strategy. Fig.4 illus-

trates the shared convolutional layers of our multi-scale

feature extraction network (FEN).

We investigate two approaches to manage scale

variability in scene parsing. Firstly, a generic multi-

scale processing method[34] is used to process input ima-

ges. We extract convolutional feature maps from three

different scales. More specifically, the original image is

resized by a fixed factor f, and then is propagated by

parallel CNN branches. All three branches share the

same structure and parameters. To produce the finer

feature map, we bilinearly interpolate the feature maps

from the parallel CNN branches to the original image

resolution and fuse them by taking at each position the

maximum response across different scales. We are doing

this during both training and testing. Secondly, a spa-

tial pyramid pooling[31] method applied on “Atrous”

convolutional layer is incorporated into our baseline

model. We use multiple parallel atrous convolutional

layers with different dilation rates to produce different



688 J. Comput. Sci. & Technol., July 2017, Vol.32, No.4

Eltwise 
Sum

Eltwise 
Sum

Eltwise 
Sum

Conv 3-

Dailation6

Conv 3-

Dailation12

Conv 3-

Dailation18

Conv 3-

Dailation24

Eltwise 
Max

Conv Feature Maps

ScaleFactor=0.5

ScaleFactor=0.75

ScaleFactor=1
M

u
lt
i-
S
c
a
le

 I
m

a
g
e
 R

e
p
re

se
n
ta

ti
o
n
s

M
u
lt
is

c
a
le

 F
e
a
tu

re
 F

u
si

o
n

Multi-Scale 
Atrous Pooling

ResNet 101

Multi-Scale
Conv Feature MapsImage

Fig.4. Multi-level multi-scale image representations.

single-scale feature maps. All the single-scale feature

maps are further fused to generate the final multi-scale

feature map. We call this two-level multi-scale CNN

as feature extraction network (FEN). The output of

FEN can be used to generate region proposals (Sub-

section 3.2) and objectness instances (Subsection 3.3)

simultaneously. The final multi-scale feature can be

formulated as:

FMulti = max
m∈[1,..,M ]

N
∑

n=1

F(m,n),

where FMulti denotes the final multi-scale feature, and

F(m,n) denotes the single-scale feature which is pro-

duced from branch m with resolution Rm and branch n

with dilation rate kn. We denote Rm as the image reso-

lution in multi-scale resolution branch m = 1, 2, ...,M .

Each Rm has a fixed scale factor f ∈ {0.5, 0.75, 1}, and

the resolution of branch m can be represented as Rm =

f × Rin(width, height, 3), where Rin(width, height, 3)

is the original input resolution. Meanwhile, we denote

kn ∈ {6, 12, 18, 24} as the dilation rate in multi-scale

atrous pooling branch n = 1, 2, ..., N . The total num-

ber of branches m and n is set to 3 and 4 in this paper

respectively.

3.2 Objectness Proposal Network

Recognition and boundary errors are both the key

problems of scene parsing as described in [35]. Recogni-

tion errors occur when object categories are recognized

incorrectly or missing. As shown in Fig.5, the tree and

the bus in row 1 and the tricycle in row 3 are missing,

and the chair and the desk in row 2 are recognized as

wrong categories. Our objectness enhancement is de-

signed for recalling these missing objects. On the other

hand, fully-connected CRF[36] is used to handle the

boundary errors that occur when semantic labels are

incorrect at the edges. To ensure integrity, we briefly

introduce the fully-connected CRF in Subsection 3.3.

(a) (b) (c)

Tree Bus

Chair
Desk

Tricycle

Fig.5. With and without objectness enhancement for scene pars-
ing. (a) Original image. (b) Segmentation without objectness
enhancement. (c) Segmentation with objectness enhancement.
This figure shows how we improve the parsing results about the
bus, chair, desk, and tricycle.

Inspired by [12-14], objectness proposal network

(OPN) is used here to help separating objects from

overlapping ones and complex stuffs, which makes the

model focused on instance-level objects. In this paper,

we use “objectness” as our measure indicator, which

not only indicates the region of proposal objects, but

also specifies the category of proposal objects. OPN

is behind FEN, and uses its multi-scale convolutional

feature maps as input for objectness proposal and se-

mantic understanding simultaneously. We use different

regions of an input image to represent the receptive

fields of different prediction objects. The classification
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and the bounding box regression are performed to esti-

mate locations and category scores of these objectness

regions. For training OPN, the ground-truth used here

is the circumscribed rectangle of object segmentation

ground-truth, and thus no extra information is used. In

this paper, we collect 115 discrete object classes (i.e.,

car, person, table) from the SceneParse150 dataset[2]

for training the objectness proposal network. Together

with additional 35 stuff classes, 150 classes are used to

evaluate models on the scene parsing task. This defi-

nition is the same with the standard of ScenePares150

benchmark[2].

The network structure and the loss function of

this stage follow the work of region proposal net-

works (RPN)[13] and Fast RCNN detection network[12],

which we briefly describe as follows for completeness.

Both RPN and detection network predict the loca-

tions of bounding boxes and object scores in a fully-

convolutional form. The difference is that the bound-

ing boxes of RPN are class-agnostic, while they are as-

sociated with categories in detection. The branch (2)

of Fig.3 shows the framework of OPN. On top of the

shared convolutional layer, a 3×3 convolutional layer is

employed to reduce dimensions, followed by two sibling

1×1 convolutional layers for regressing the locations of

bounding boxes and classification. We utilize a multi-

task loss function to train OPN. For each anchor, its

loss function is defined as:

L(R(k, k∗, t, t∗))

=
1

Ncls
Lcls(k, k

∗) + λ
1

Nreg
k∗Lreg(t, t

∗), (1)

where the ground-truth class label k∗ is 1 if the anchor

is positive, and 0 if the anchor is negative. Moreover,

k ∈ (k0, k1, . . . , kK) is a discrete probability distribu-

tion over K + 1 categories (the additional 1 is the ex-

tra background class, and denoted as k0). For simpli-

city, we implement the classification as a two-class soft-

max layer. Alternatively, one may use logistic regres-

sion to produce k scores. Thus, Lcls(k, k
∗) = − log pk∗

is the standard cross-entropy loss for the classification

over two classes (object vs non-object). The second

term, loss k∗Lreg(t, t
∗) is defined over a tuple of true

bounding box regression for class k∗, and it is activated

only for positive anchors (k∗ = 1) and is shielded for

others (k∗ = 0). In addition, t∗ = (t∗x, t
∗

y, t
∗

w, t
∗

h) de-

notes the ground-truth bounding box, and a predicted

tuple t = (tx, ty, tw, th) again for class k∗. Finally,

Lreg(t, t
∗) =

∑

i∈x,y,w,hR(ti − t∗i ), where

R(∗) = smoothL1
(x) =

{

0.5x2, if |x| < 1,

|x| − 0.5, otherwise,

is a robust smoothed L1 loss function defined in [12]

that is less sensitive to outliers than L2 loss used in R-

CNN[27]. The two terms are normalized by Ncls and

Nreg and weighted by a balancing parameter λ. In

our implementation, the cls term Lcls(k, k
∗) in (1) is

normalized by the mini-batch size (i.e., Ncls = 64 in

VGG16) and the reg term Lreg(t, t
∗) is normalized by

the number of anchor locations (i.e., Nreg = 2 400).

By default, we set λ = 10, because the reg term is

more important than the cls term in regional propo-

sals. Although other values may be more suitable for

training a better OPN, λ is not a decisive parameter.

Finally, R is the output of OPN, represented as a list

of boxes Ri = {xi, yi, wi, hi, pi, ci}, where i is the in-

dex of Ri. Ri is centered at (xi, yi) with width wi and

height hi, and pi is the probability of category ci. For

simplicity, Ri can be denoted as Ri = {ti, pi, ci}, where

ti = {xi, yi, wi, hi}.

3.3 Objectness Enhancement Network

In our objectness enhancement network (OEN), the

network takes multi-scale features as the input, and

outputs box-level or mask-level instance-aware seman-

tic segmentation results. The cascade OEN consists

of three stages: box-level instance enhancement, mask-

level instance enhancement, and fully-connected CRF.

We use the category-based region proposal which is the

output of OPN as the auxiliary input, and combine it

with the multi-scale features to calculate the final re-

sults. As shown in Fig.3 and Fig.6, we produce two

different parsing results. 1) The box enhanced parsing

is derived from the box-level instances and multi-scale

convolutional feature maps. 2) The mask enhanced

parsing is derived from the mask-level instances and

multi-scale convolutional feature maps. The mask-level

instances can be calculated by the box-level instances

and multi-scale convolutional feature maps. In this

subsection, we sequentially introduce these techniques:

box-level instances, mask-level instances, instance en-

hancement, and fully-connected CRF.
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 (a) (b) (c)

(d) (e) (f)

Fig.6. Flowchart of objectness enhancement. (a) Convolutional
feature maps. (b) Mask-level instances. (c) Mask enhanced pars-
ing. (d) Region proposals. (e) Box-level instances. (f) Box en-
hanced parsing.

3.3.1 Box-Level Instances

Box-level instances are rough collections of object-

ness. As mentioned before, the region proposal Ri =

{ti, pi, ci} is formed by a location and category. Be-

cause the object is encircled by the region proposal,

we can roughly consider the rectangular area ti =

{xi, yi, wi, hi} as a box-level instance, and it corre-

sponds to category ci. That is to say, all the pixels

in region ti are regarded as a part of the box-level in-

stance. We denote the box-level instance Bi(W,H, ci)

as:

Bi(W,H, ci) =

{

1, if p ∈ Ri(ti),
0, otherwise,

where p is a pixel of Bi(W,H, ci), and W and H are

the width and the height of the box-level instance re-

spectively.

3.3.2 Mask-Level Instances

Objects are usually irregular in nature, and describ-

ing an object by a rectangle will be mixed with a large

number of background pixels. Simply using the box-

level instances can improve the identification ability of

objects, but will damage the identification ability of

stuffs. As shown in Fig.3, we combine the feature maps

and box-level instances to produce mask-level instances.

For each box-level instance Bi(W,H, ci), we can get one

mask-level instance Mi(W,H, ci). This process can be

formulated as:

Mi(W,H, ci) (2)

=

{

1, if p ∈ F (W,H, ci)×Ri(ti, ci) > t,
0, otherwise,

where F (W,H, ci) is the feature map corresponding to

category ci. Width W and height H are the same with

those of the input image. Threshold t controls the size

of the mask, and the upper boundary is the size of

box-level instance. It can be drawn from (2) that the

mask is only related to the specific feature map, which

has the same category with region proposals. Besides,

one category may have many instance objects, and thus

we can group the mask-level instances of these objects

into a feature map for simplifying the calculation. Fur-

ther, we can get the entire feature maps M(W,H,C)

through iterating all Ri, where C = 1, ..., ci is the cate-

gory space.

3.3.3 Instance Enhancement

After obtaining the box-level or mask-level in-

stances, we can generate the objectness enhancement

feature from the multi-scale convolutional feature map.

In this paper, we combine instance regions and fea-

ture maps with tied weighs strategy. The pixels which

belong to the instance regions have been enhanced by

weight w and probability pi. The mask-level enhance-

ment feature FME can be defined as:

FME(W,H,C)

= F (W,H, cj)×Mi(W,H, ci)× w × pi × c∗, (3)

where c∗ = 1 if ci = cj , and zero otherwise. This means

that objectness enhancement being activated only hap-

pens when the feature map and the object instance

have the same label. In (3), replacing Mi(W,H, ci)

with Bi(W,H, ci) can get the box-level enhanced fea-

ture FBE.

3.3.4 Fully-Connected CRF

Due to the multiple max-pooling layers, the in-

creased invariance and the large receptive fields can

yield quite smooth responses and homogeneous clas-

sification results in scene parsing. To overcome

these limitations, we integrate the fully-connected CRF

model[1,36] into our OENet to refine the feature map as

a postprocessing stage. Our model employs the energy

function:

E(x) =
∑

i

θi(xi) +
∑

ij

θij(xi, xj),

where x is the label of pixels in an image. The unary po-

tential θi(xi) = − logP (xi), and P (xi) is the inference

probability at pixel i as computed by CNN. The second
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pairwise potential allows for the efficient inference be-

tween a pair of connecting images by a fully-connected

graph. We denote the pairwise potential as follows:

θij(xi, xj)

= µ(xi, xj)(λ1 exp(−
||pi − pj||

2

2δ2α
) +

λ2 exp(−
||pi − pj ||

2

2δ2β
−

||ci − cj ||
2

2δ2γ
)).

We denote i and j as the position of a pixel in the con-

volutional feature maps and its original input image. If

xi 6= xj , µ(xi, xj) = 1, and zero otherwise. That is to

say, only nodes with different labels are penalized. Two

Gaussian kernels are used in different feature spaces.

The former exp term in the above equation indicates

only pixel position is valid, and it only considers spa-

tial proximity when enforcing smoothness; the latter

exp term indicates a “bilateral” kernel depends on both

RGB color (denoted as c) and pixel position (denoted

as p), and it forces pixels with a similar color and po-

sition to have similar labels. The hyper parameters

δα, δβ and δγ control the scale of Gaussian kernels, and

the weight parameters λ1 and λ2 are used to balance

the two features.

In this paper, all the experiments are conducted

with fully-connected CRF.

3.4 Filling Black-Hole

The “extra background” category, as a specific cate-

gory, is often attached to the category space in detection

and segmentation tasks. It can significantly improve

the performance. This strategy can remove the ambigu-

ous samples from the positive gallery, which makes the

classifier more robust. However, in scene parsing task,

some pixels will be assigned to the “extra background”

category in the inference stage. This is an obvious clas-

sification error. We call this problem as “black-hole”.

As shown in (4), we develop a very intuitive way to

overcome this issue. The output label can be denoted

as:

OL(i,j) = argmin
c∈[2,...,N ]

OF (i,j,c), (4)

where OF (i,j,c) is the feature computed by CNN, (i, j ) is

the position of the pixel, and c is the number of the fea-

ture channel which is equal to the number of categories

with an “extra background” category. We denote c = 1

as the “extra background” category, and the rest are

the other categories. In general, we assign the channel

ID which has the maximum probability in all channels

as the label. In this paper, we rule out the channel

c = 1 (extra background), then calculate the maximum

probability of the rest feature maps, and set the ID

as the prediction label. In other words, we repair the

“black-hole” regions by specifying the label which has

the second largest probability if the index of predicting

category equals 1. This strategy significantly increases

the parsing accuracy.

4 Experiments

4.1 SceneParse150

4.1.1 Dataset

We evaluate the proposed OENet framework on

the SceneParse150 scene parsing benchmark dataset.

The original dataset contains 20 210 (train), 2 000 (val)

pixel-level labeled images for training and validation,

respectively. The performance is measured in terms

of pixel intersection-over-union averaged across the 150

classes (mIoU, mean intersection-over-union) and the

proportion of correctly classified pixel (pixel accuracy).

For training the region proposal network, we extract

the bounding box ground-truth of an object from the

circumscribed rectangle of segmentation ground-truth.

Among the 150 classes, there are 35 stuff classes (i.e.,

wall, sky, road) and 115 object classes (i.e., car, person,

table). The bounding box ground-truth of an object is

produced only from the 115 object classes.

4.1.2 Implementation Details

For training OENet, we employ the ResNet101 net-

work pre-trained on MSCOCO[9] dataset, and a 5-

step training process for optimization as shown in Al-

gorithm 1. For training FEN and OEN, we employ

“ploy” learning rate policy (the learning rate is multi-

plied by (1 − iter/max iter)power, power = 0.9), and

use a mini-batch of 10 images and initial learning rate

of 0.002 5. We utilize momentum of 0.9 and weight de-

cay of 0.000 5. After FEN has been fine-tuned on the

training set, we cross-validate the CRF parameters ac-

cording to [1]. We employ 10 mean field iterations. We

use default values of λ1 = 3 and δα = 3 and search

for the best values of λ2, δβ , δγ by cross-validation on

200 images from validation. We employ a coarse-to-fine

search strategy. The initial search range of the parame-

ters is λ2 ∈ [3 : 6], δβ ∈ [3 : 6], and δγ ∈ [30 : 10 : 100],

and then we refine the search step sizes around the first

round’s best values. We employ “step” learning rate

policy to train OPN, and 40 000 and 80 000 iterations
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are enforced for RPN and detection network respec-

tively. The initial learning rate is 0.001. All the net-

works use the momentum of 0.9 and the weight decay

of 0.005. During benchmarking on the multi-scale net-

work, we downsample the images into a low resolution.

We set the long side at 500 pixels, and for augmenta-

tion, the input size in the training and test protocol is

513 pixels and 321 pixels, respectively. All experiments

are performed in the open source framework CAFFE[37]

with NVIDIA Titan X GPU.

Algorithm 1. Training Process OENet

Step 1: Pre-train a deep CNN model on the MSCOCO[9]

dataset, as described in [9].

Step 2: Train the feature extraction network (FEN) with a
cross-entropy classifier for each spatial position on the target
dataset. This network is initialized with the pre-trained model
in step 1. It is used for initializing other networks, and it is
also used as our baseline model.

Step 3: Cross-validate the CRF parameters according to [1].

Step 4: Train objectness proposal network (OPN), which is
initialized with an extraordinary model pre-trained in step 2.
In this step, we first train the RPN subnet, and then use the
proposals generated by RPN to train the detection subnet.
The shared convolution layers are always fixed.

Step 5: Output the unified OENet trained in step 2 and step
4, the CRF modular, the region enhancement modular and the
black-hole filling modular are also integrated into the entire
network.

4.1.3 Ablation Studies

We evaluate the effectiveness of the four impor-

tant components of OENet. The performance over all

150 categories from five variants of OENet is reported

in Table 1. With the same training protocol, multi-

level multi-scale brings 4.1% and 1.5% improvements

on mIoU and pixel accuracy, respectively. As analyzed

in Section 3, objectness enhancement is beneficial to re-

call the missing objects, which results in performance

promotion in mIoU by 1.5%. Employing the black-hole

filling strategy for post-processing, our final output sub-

stantially outperforms the model without this strategy

by 1.9% and 2.2% on mIoU and pixel accuracy, respec-

tively.

In order to further validate the effectiveness of our

proposed method, we study the IoU details of each cate-

gory. Detailed results are listed in Appendix A. First,

we find that the performance improvement has no bias.

That is to say, both the objects and stuffs have been

improved, although our approach focuses on process-

ing objectness regions. Second, the performance of 109

categories is improved over multi-scale model in the en-

tire dataset, accounting for 72.7%. These results are

also class-agnostic. Third, after objectness enhance-

ment, there are 70.7% categories overtaking the multi-

scale model. The failure cases include 15 stuffs and 29

objects, but most of the objects are usually considered

as the background, i.e., a tree, fence, column, bathtub,

and so on. These results verify the effectiveness of the

objectness region enhancement. Finally, with black-

hole filling technology, 60% categories again achieve

better results. In general, 88% categories outperform

the baseline model with our OENet model.

Table 1. Ablation Studies on the Validation

Set of SceneParse150

MMS Box Mask BH mIoU Pixel Accuracy (%)

30.9 74.0
√

35.0 75.5
√ √

35.6 75.1
√ √ √

36.5 75.7
√ √ √ √

38.4 77.9

Note: MMS: muti-level multi-scale, Box: box-level region en-
hancement, Mask: mask-level region enhancement, and BH:
black-hole filling.

4.1.4 Region Proposal Evaluations

We also concern about how the region proposal pol-

icy affects the performance in the scene parsing task. In

this subsection, we make a comparison with some sys-

tems that are designed for object detection. We train

OPN under the FasterRCNN[13] and RFCN[14] frame-

work to produce box-level instances for our OENet.

FasterRCNN-based and RFCN-based OPN use the

same convolutional framework, but use different detec-

tion modules. Besides, the bounding box ground-truth

is used as the upper boundary for evaluating. As shown

in Table 2, same with the detection results, the pars-

ing results on the FasterRCNN framework are slightly

better than those on the RFCN framework. It is encou-

raging that the parsing results running on bounding box

ground-truth achieve ideal results by mIoU of 47.8 and

pixel accuracy of 80.3% on validation set. This upper

boundary means that our proposed method has room

for improvement.

Table 2. Effect of Different Detection Methods

Method Detection mIoU Pixel

Accuracy (%) Accuracy (%)

GT 100.0 47.8 80.3

FasterRCNN[13] 84.4 38.4 77.9

RFCN[14] 82.3 38.0 77.7
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4.1.5 Comparison with State-of-the-Arts Methods

As for the baseline of scene parsing on the

SceneParse150 benchmark, several state-of-the-art

methods[1-2,7,16,38] and a baseline model which is modi-

fied from the ResNet101 model are used for comparison.

FCN[7] upsamples the activations of multiple layers in

CNN for pixel-wise segmentation. SegNet[16] is a en-

coder and decoder architecture used for image segmen-

tation. DilatedNet[38] drops pool4 and pool5 from fully

convolutional VGG16 network, and replaces the follow-

ing convolutions with dilated convolutions. Cascade-

SegNet and Cascade-DilatedNet[2] construct a cascade

multiple streammodel to generate stuff, object and part

maps from shared feature activation, and then merge all

the maps to produce full scene parsing. DeepLabv2[1]

is a multi-scale ResNet101 model with atrous spatial

pyramid pooling and fully-connected CRF. Our base-

line model is based on the DeepLab model, but without

multi-scale and ASPP scheme.

We report the evaluation results in Table 3. With

all the components, our final model yields 38.4 mIoU

and 77.9% pixel accuracy, which significantly outper-

form the baseline by 7.5% and 3.9% on the validation

dataset respectively. These results are also better than

those of the other comparison models.

Table 3. Comparsion Among OENet with State-of-the-Art

Methods on the Validation Set of SceneParse150

Method mIoU Pixel Accuracy (%)

SegNet[16] 21.6 71.0

Cascade-SegNet[2] 27.5 71.8

FCN8s[7] 29.4 71.3

DilatedNet[38] 32.3 73.6

DeepLabv2[1] 34.3 75.3

Cascade-DilatedNet[2] 34.9 74.5

Baseline 30.9 74.0

OENet 38.4 77.9

4.1.6 Qualitative Results

We visualize the parsing results of our baseline

model with mask-level objectness region enhancement,

black-hole filling strategy in Fig.7. The baseline model

loses some objects, and our model is able to recall some

missing objects through employing objectness region

enhancement. Benefiting from the local contextual in-

formation, OPN gathers the related pixels and com-

bines them into objectness, especially to discover some

objects which are small (e.g., the light in row 2 and the

tea table in row 6) or overwhelmed by a large area of

the background (e.g., the red bus and white van in row

1, the chair in row 3). The advantage of black-hole fill-

ing is also very obuvious. It recalls the pixels which are

assigned to the extra background class. These above er-

rors look like a black hole. Our algorithm tries to find

an appropriate category to populate it. Rediscovering

the ground in row 1, the car in row 4, and the sash door

in row 5 is favorable evidence.

4.1.7 Failure Cases

As mentioned above, objectness enhancement and

black-hole filling bring some good properties; however

they are not always effective. The major problems in-

clude three aspects. 1) Species in nature are complex

and diverse, and thus for those objects that are not ex-

isting in the training set, both the classifier and detector

are unable to identify them. The regions of these ob-

jects may be identified as the surrounding background.

As shown in row 1 of Fig.8, the fishes are missing in

the water after black-hole filling. 2) Because the ob-

jects and the background are very similar, the classifier

and the detector may be deceived by the visual sense.

On one hand, the segmentation network may output

incorrect classification results. On the other hand, the

detection network may not be able to find the target.

As shown in row 2 of Fig.8, the bus has not been fully

recognized by the baseline segmentation network. Be-

sides, it also has not been detected by our objectness

proposal network. The results of three models are con-

sistent. 3) For the complex scenes, especially the scenes

with crossing and overlapping objects, the classifier and

the detector will feel rather confused. Such as the ex-

ample of row 3 in Fig.8, the view is obscured by the

iron gate. This phenomenon makes all the results quite

messy.

4.2 Cityscapes

4.2.1 Dataset

Cityscape[39] is a recent large-scale high-resolution

scene understanding dataset which contains high qua-

lity pixel-level annotations of 5 000 images collected

from 50 cities in different street scenes. It defines 19

categories containing both objects and stuffs. In all,

the training, the validation, and the test set contain

2 975, 500, 1 525 images, respectively.

4.2.2 Implementation Details

Same with the setting of the SceneParse150 dataset,

we employ the ResNet101 network for extracting fea-
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Fig.7. Examples of scene parsing on the SceneParse150 dataset. (a) Input image. (b) Ground-truth. (c) Baseline. (d) Segmen-
tation with multi-scale representations and objectness enhancement. (e) Segmentation with multi-scale representations, objectness
enhancement, and black-hole filling.

tures. We do not exploit multi-scale image representa-

tion due to the limited GPU memory, but retain multi-

scale atrous pooling. The high-resolution (2 048×1024)

is a challenging problem for training deep network with

the limited GPU memory. In order to solve this prob-

lem, we crop the original image into 705×705 over-

lapped patches, and train on these patches without

downsampling. Each image is split into eight patches.

For data augmentation, the input sizes of the training

and test network are 545 pixels and 705 pixels, respec-

tively. Other hyper-parameters are the same with the

setting of the SceneParsing150 dataset.

4.2.3 Results on Validation Set

We explore the validation set in Table 4. With

the same training protocol, results on high-resolution

significantly bring 2% and 3.1% improvements before

and after objectness region enhancement, respectively.

Employing our OENet method brings 0.7% and 1.8%

improvement without and with high-resolution training

respectively. We conclude that high-resolution training

helps the objectness proposal network to find smaller

objects. Therefore, OENet shows more obvious advan-

tages in the parsing task with high-resolution images.

4.2.4 Results on Test Set

We upload our baseline model and high-resolution

OENet model to the evaluation server (Table 5), obtain-

ing performance of 69.8% and 71.3%, respectively. Al-

though our OENet does not have the best performance,

it is still competitive. More importantly, our core al-

gorithms including objectness region enhancement and

black-hole filling strategies have been shown to be effec-

tive in the scene parsing task. Note that our model is

only trained on the training set, and we do not use the

coarse annotation. The results are reported on a single
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Fig.8. Three failure cases on the SceneParsing150 dataset. (a) Input image. (b) Ground-truth. (c) Baseline. (d) Segmentation with
multi-scale representations and objectness enhancement. (e) Segmentation with multi-scale representations, objectness enhancement,
and black-hole filling.

model, and we do not use the multi-scale training and

test strategies.

4.2.5 Qualitative Results

We visualize the results in Fig.9. Benefiting from

the objectness enhancement, the integrity of an object

is well maintained (e.g., the person in row 2, the tail of

the car in row 3, and the truck in row 4 and row 6).

We find high-resolution images also help to improve the

performance of objectness enhancement. As shown in

row 1 and row 5 of Fig.9, our method finds some smaller

objects (e.g., the car in row 1 and the motorcycle in row

5).

4.2.6 Failure Cases

As mentioned previously, objectness enhancement

can preserve the integrity of an object. However, ob-

jectness enhancement may also destroy some crossing

objects. As shown in Fig.10, comparing Baseline-HR

with OENet, the poles (before the car in row 1 and row

2, before the rider in row 3) and the vegetation (among

the right cars in row 4) are lost in the background ob-

jects.

Table 4. Results on Cityscapes Validation Set

Method mIoU

VGG16 DeepLabv2-VGG16[1] 62.9

FCN[7] 63.4

Pixel-level encoding 64.3

DPN[40] 66.8

DilatedNet[38] 67.1

Adelaide[8] 68.6

ResNet101 DeepLabv2-Resnet101[1] 71.4

Baseline 69.3

Baseline-HighResolution 71.3

OENet 70.0

OENet-HighResolution 73.1

Note: HighResolution: train and test on 705×705 high-
resolution patches.

5 Conclusions

In this paper, we proposed and “OENet” for scence

parsing, which is trained on image classification net-

work. In order to recall the missing objects, an object-

ness proposal network based objectness enhancement

was proposed to produce box-level instances and mask-
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Table 5. Performance Comparison of OENet with the State-of-the-Art Methods on Cityscapes Test Set

FCN8s[7] DPN[40] DilatedNet[38] DeepLabv2[1] Adelaide[8] Baseline OENet

Road 97.4 97.5 97.6 97.9 98.0 97.4 97.5

Sidewalk 78.4 78.5 79.2 81.3 82.6 78.3 79.4

Building 89.2 89.5 89.9 90.3 90.6 90.0 90.5

Wall 34.9 40.4 37.3 48.8 44.0 45.8 48.5

Fence 44.2 45.9 47.6 47.4 50.7 46.3 49.0

Pole 47.4 51.1 53.2 49.6 51.1 40.6 43.5

Traffic Light 60.1 56.8 58.6 57.9 65.0 53.4 55.7

Traffic Sign 65.0 65.3 65.2 67.3 71.7 65.6 67.3

Vegetation 91.4 91.5 91.8 91.9 92.0 91.3 91.7

Terrain 69.3 69.4 69.4 69.4 72.0 67.6 69.2

Sky 93.9 94.5 93.7 94.2 94.1 94.5 94.8

Person 77.1 77.5 78.9 79.8 81.5 79.8 80.8

Rider 51.4 54.2 55.0 59.8 61.1 59.2 61.2

Car 92.6 92.5 93.3 93.7 94.3 93.9 94.2

Truck 35.3 44.5 45.5 56.5 61.1 62.8 64.6

Bus 48.6 53.4 53.4 57.5 65.1 69.3 70.8

Train 46.5 49.9 47.7 57.5 53.8 62.5 64.4

Motorcycle 51.6 52.1 52.2 57.7 61.6 59.1 61.1

Bicycle 66.8 64.8 66.0 68.8 70.6 68.5 70.0

mIoU 65.3 66.8 67.1 70.4 71.6 69.8 71.3

Ego Rect border Out of Roi Static Dynamic Ground

Building Wall Fence Guard Rail Bridge Tunnel Pole Pole group Traffic Light

Traffic Sign

Vegetation Terrain Sky Person Rider Car Truck Bus Caravan

TrailerTrain Motorcycle Bicycle License

Road Side walk Parking

Rail Track

(a) (b) (c) (d) (e)

Fig.9. Examples of scene parsing on the Cityscapes dataset. (a) Input image. (b) Ground-truth. (c) Baseline. (d) Segmentation
with high-resolution representations. (e) Segmentation with OENet with objectness enhancement, black-hole filling strategies, and
high-resolution representations. Roi: Region of interest.
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Fig.10. Four failure cases on Cityscapes Dataset. (a) Input image. (b) Ground-truth. (c) Segmentation with high-resolution represen-
tations. (d) Segmentation with OENet with objectness enhancement, black-hole filling strategies, and high-resolution representations.

level instances. With objectness enhancement strategy,

some missing objects are recalled. Both box-level in-

stances and mask-level instances can be considered as

objectness. The only difference is that the mask-level

instance can be regarded as a fine-grained box-level in-

stance. Therefore, we could use the box-level instances

and the convolutional feature maps to synthesize the

mask-level instances. To produce semantically accurate

predictions and detailed parsing results along object

boundaries, we also combined ideas from deep convolu-

tional neural networks and full-connected CRF. Finally,

the black-hole filling strategy effectively processes those

pixels misallocated to the superfluous extra background

class. Our experimental results showed that the OENet

method significantly outperforms the state-of-the-art

methods on the challenging datasets SceneParse150 and

Cityscapes. It should be noted that our core algo-

rithms, objectness region enhancement, and black-hole

filling techniques are not limited in OENet, and they

can be embedded into other parsing networks as sep-

arate modules to improve the parsing capacity in the

objectness area. In the future, we will explore how to

further improve the performance of the objectness re-

gion proposal, thereby improving the segmentation re-

sults.
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Appendix

A Performance of Each Category

The evaluation results of each category are list in

Table A. The mIoU and accuracy indicate the pixel

intersection-over-union averaged across the 150 classes

and the average proportion of correctly classified pixel

on each category, respectively. The bold indicates the

best result in one category.
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Table A. Performance of Each Category on SceneParse150 Validation Set

Base MMC Box Mask BH Base MMC Box Mask BH

Wall 66.0 69.4 68.9 69.7 69.4 Building 75.7 77.0 76.8 76.9 77.7

Sky 92.3 92.3 92.3 92.3 92.3 Floor 69.7 73.7 71.3 73.8 73.3

Tree 67.2 69.2 69.0 68.7 68.0 Ceiling 73.8 77.5 76.8 77.5 77.7

Road 73.8 77.5 76.8 77.5 77.7 Bed 73.9 81.7 72.9 81.3 81.2

Pane 48.7 54.6 52.2 53.5 53.4 Grass 65.6 62.8 63.4 62.9 63.6

Cabinet 47.9 50.8 54.5 52.9 53.0 Sidewalk 47.5 55.9 55.7 55.9 55.5

Person 67.4 70.7 66.5 71.2 70.6 Earth 27.8 22.9 22.5 22.8 29.0

Door 20.4 26.4 34.1 29.2 30.9 Table 38.3 47.6 42.3 46.9 46.0

Mountain 51.7 49.9 49.2 49.5 49.1 Plant 41.9 41.5 44.6 40.5 43.0

Curtain 60.1 65.6 64.1 65.9 65.6 Chair 36.7 44.0 45.1 45.8 45.4

Car 72.0 78.2 73.2 78.7 79.0 Water 45.4 47.1 46.9 47.1 47.8

Painting 57.4 63.8 62.9 63.5 63.2 Sofa 45.5 54.5 54.0 54.9 54.5

Shelf 28.6 34.6 34.7 34.5 34.9 House 43.9 34.7 34.7 34.8 39.3

Sea 46.2 52.2 51.6 52.1 55.0 Mirror 39.2 52.7 54.4 54.2 54.6

Rug 36.4 39.6 37.3 39.6 39.7 Field 30.8 23.8 22.7 22.9 21.3

Armchair 17.6 29.6 36.1 33.2 32.9 Seat 37.6 50.0 50.0 51.6 53.0

Fence 25.4 26.0 25.6 25.8 28.0 Desk 31.4 38.6 34.3 39.9 38.9

Rock 31.8 34.9 37.5 33.9 32.6 Wardrobe 39.7 42.2 43.0 44.6 45.5

Lamp 35.4 44.7 42.1 44.5 44.4 Bathtub 54.2 63.2 59.7 62.9 63.2

Railing 24.7 23.6 22.4 23.6 24.8 Cushion 26.2 38.0 31.1 38.3 39.0

Base 11.2 16.8 16.6 16.8 18.8 Box 9.1 7.0 10.8 9.8 13.0

Column 33.5 38.9 36.7 38.2 37.9 Signboard 22.0 23.3 22.8 23.3 24.2

Chest 36.8 41.6 46.0 48.1 48.8 Counter 28.3 27.9 27.6 28.2 27.9

Sand 18.9 28.1 28.7 28.1 34.0 Sink 44.1 52.7 53.1 57.1 59.1

Skyscraper 54.7 66.1 66.2 66.2 65.0 Fireplace 48.6 63.5 66.2 64.4 64.3

Refrigerator 43.3 67.1 64.7 73.9 73.2 Grandstand 30.4 31.0 29.3 31.0 35.6

Path 15.2 20.6 20.6 20.6 20.1 Stairs 27.0 22.5 22.4 22.5 21.9

Runway 63.3 57.1 57.1 57.2 62.4 Case 32.0 29.9 28.3 29.4 35.0

Pool Table 86.5 88.4 88.1 88.4 88.3 Pillow 34.2 38.3 21.0 37.5 37.2

Screen Door 30.0 35.1 30.3 32.8 36.8 Stairway 21.1 22.6 22.6 22.6 22.7

River 10.5 14.7 14.3 14.6 14.1 Bridge 18.1 23.4 23.4 23.5 40.7

Bookcase 30.7 27.6 32.2 30.0 29.9 Blind 13.1 14.9 24.3 19.9 19.9

Coffee Table 34.4 48.2 42.5 48.8 48.8 Toilet 63.8 77.7 73.2 78.7 77.9

Flower 20.2 25.6 24.7 25.2 28.6 Book 28.1 33.6 20.3 33.9 36.6

Hill 6.3 5.8 5.8 5.8 5.8 Bench 34.4 33.6 33.1 34.5 33.6

Countertop 39.2 42.1 40.3 44.5 46.6 Stove 47.4 55.6 49.3 51.0 52.6

Palm 40.3 35.9 31.3 32.6 32.0 Kitchen 29.0 24.5 27.6 29.8 29.2

Computer 44.9 54.9 45.9 56.2 55.6 Swivelchair 31.1 31.5 37.6 38.9 40.0

Boat 42.0 41.4 57.1 46.3 51.9 Bar 27.4 24.5 24.3 26.3 27.8

Arcade 27.7 25.5 31.1 25.6 39.4 Hovel 21.4 4.8 4.8 4.8 10.1

Bus 63.7 83.3 82.4 83.4 84.4 Towel 38.8 39.5 40.3 40.5 41.4

Light 15.4 21.2 21.2 21.2 21.2 Truck 8.5 21.1 25.5 24.5 24.0

Tower 26.1 32.9 33.0 32.9 32.7 Chandelier 43.9 50.5 48.3 54.9 54.9

Awning 10.4 12.5 23.6 20.8 20.6 Streetlight 3.6 9.1 7.5 8.9 9.0

Booth 30.6 37.7 37.4 37.9 44.0 Television 47.4 57.4 62.4 60.2 58.1

Airplane 50.4 52.1 46.7 52.4 46.6 Dirt Track 0.0 0.0 0.0 0.0 0.0

Apparel 20.0 17.7 14.5 17.1 20.6 Pole 4.0 5.5 10.5 8.8 8.9

Land 0.0 2.6 2.6 2.5 5.4 Bannister 4.0 2.0 2.0 2.0 6.0

Escalator 32.1 5.7 5.9 5.7 5.7 Ottoman 21.1 27.0 31.2 30.0 29.7

Bottle 2.1 16.2 20.0 18.2 26.7 Buffet 29.3 38.7 40.9 39.2 39.1

Poster 1.0 9.5 21.7 12.8 12.0 Stage 1.3 4.3 4.6 4.3 6.4

Van 23.3 29.8 21.8 42.0 42.3 Ship 26.7 4.3 18.9 4.6 27.2

Fountain 17.4 1.5 19.9 19.9 19.7 Conveyer 35.8 37.5 38.3 37.5 50.3

Canopy 4.7 13.8 20.8 14.4 14.2 Washer 50.0 36.0 34.0 35.9 50.8

Plaything 18.6 10.5 4.4 10.4 15.6 Swimpool 18.0 17.7 17.9 17.7 17.5
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Table A. (Continued)

Base MMC Box Mask BH Base MMC Box Mask BH

Stool 13.8 26.0 32.1 28.0 29.2 Barrel 12.4 37.9 41.2 38.7 37.4

Basket 6.0 8.9 18.1 13.9 16.4 Waterfall 67.1 34.6 34.5 34.7 40.2

Tent 73.1 74.8 74.9 74.8 67.6 Bag 2.6 4.0 2.5 1.9 6.3

Minibike 27.6 54.4 42.5 52.2 55.0 Cradle 57.5 75.5 67.5 75.6 75.6

Oven 4.7 18.6 19.2 17.2 14.8 Ball 36.2 38.5 31.8 38.4 40.4

Food 22.4 4.7 17.8 15.7 54.4 Step 6.0 0.0 4.7 7.3 8.0

Tank 27.2 30.0 34.6 37.2 40.2 Trade 14.0 13.4 12.4 12.7 12.7

Microwave 28.7 43.2 44.0 44.7 56.8 Pot 19.6 13.4 11.0 13.4 20.7

Animal 29.4 29.2 33.3 33.1 52.0 Bicycle 34.1 37.7 45.0 38.9 40.5

Lake 2.4 41.9 41.9 41.9 41.4 Dishwasher 29.1 47.1 49.0 41.9 41.4

Screen 60.9 68.9 69.8 68.9 68.9 Blanket 0.0 2.6 0.0 4.1 4.4

Sculpture 11.2 32.3 34.5 34.0 41.9 Hood 23.1 35.0 24.4 35.1 35.3

Sconce 6.5 19.9 30.3 31.8 31.9 Vase 8.3 21.8 23.8 32.7 33.2

Traffic Light 9.5 18.5 26.0 20.0 19.9 Tray 0.0 2.1 3.6 4.0 6.5

Ashcan 9.3 25.4 22.3 24.8 28.1 Fan 34.3 30.3 29.2 30.2 30.0

Pier 26.8 12.7 12.7 12.7 12.7 Crt Screen 0.0 21.9 22.2 23.0 22.9

Plate 11.3 18.5 25.5 26.6 39.5 Monitor 6.5 5.0 13.7 18.3 19.3

Bulletin 29.2 32.0 38.8 32.3 29.4 Shower 0.0 1.0 2.5 2.0 2.0

Radiator 15.7 30.2 34.1 43.3 43.1 Glass 1.9 1.3 5.0 1.5 4.0

Clock 5.0 9.9 16.7 14.0 13.9 Flag 7.5 23.4 30.8 24.1 24.4

mIoU 30.9 35.5 35.6 36.5 38.4 Accuracy 74.0 75.5 75.2 75.7 77.9
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