
1

FeatAug-DETR: Enriching One-to-Many Matching
for DETRs with Feature Augmentation

Rongyao Fang, Peng Gao, Aojun Zhou, Yingjie Cai, Si Liu, Jifeng Dai, and Hongsheng Li

Abstract—One-to-one matching is a crucial design in DETR-
like object detection frameworks. It enables the DETR to perform
end-to-end detection. However, it also faces challenges of lacking
positive sample supervision and slow convergence speed. Several
recent works proposed the one-to-many matching mechanism to
accelerate training and boost detection performance. We revisit
these methods and model them in a unified format of augmenting
the object queries. In this paper, we propose two methods that
realize one-to-many matching from a different perspective of
augmenting images or image features. The first method is One-
to-many Matching via Data Augmentation (denoted as DataAug-
DETR). It spatially transforms the images and includes multiple
augmented versions of each image in the same training batch.
Such a simple augmentation strategy already achieves one-to-
many matching and surprisingly improves DETR’s performance.
The second method is One-to-many matching via Feature Aug-
mentation (denoted as FeatAug-DETR). Unlike DataAug-DETR,
it augments the image features instead of the original images and
includes multiple augmented features in the same batch to realize
one-to-many matching. FeatAug-DETR significantly accelerates
DETR training and boosts detection performance while keeping
the inference speed unchanged. We conduct extensive experi-
ments to evaluate the effectiveness of the proposed approach
on DETR variants, including DAB-DETR, Deformable-DETR,
and H-Deformable-DETR. Without extra training data, FeatAug-
DETR shortens the training convergence periods of Deformable-
DETR [1] to 24 epochs and achieves 58.3 AP on COCO val2017
set with Swin-L as the backbone. Code will be available at:
https://github.com/rongyaofang/FeatAug-DETR

Index Terms—Detection Transformer, One-to-one Matching,
One-to-many Matching, Data Augmentation, Accelerating Train-
ing

I. INTRODUCTION

Object detection is a fundamental task in computer vision,
which predicts bounding boxes and categories of objects in an
image. In the past several years, deep learning made significant
success in the object detection task and tens of classic object
detectors have been proposed. These classic detectors are
mainly based on convolutional neural networks, which include
the one-stage detectors [2]–[4] and two-stage detectors [5]–
[8]. One-to-many label assignment is the core design of the
classic detectors, where each ground-truth box is assigned to
multiple predictions of the detector. With such a one-to-many
matching scheme, these frameworks require human-designed
non-maximum suppression (NMS) for post-processing and
cannot be trained end-to-end.

R. Fang, A. Zhou, Y. Cai, H. Li are with the Chinese University of Hong
Kong, Hong Kong SAR, China.

P. Gao is with Shanghai AI Laboratory, Shanghai, China.
S. Liu is with Beihang University, Beijing, China.
J. Dai is with Tsinghua University, Beijing, China.
Corresponding author: Hongsheng Li

Feature map

… …
Queries Augmented queries

Predictions Augmented
Predictions

Ground Truth Augmented
Ground Truth

Matching

(a) Object query augmentation for DETR

(b) Feature map augmentation for DETR (ours)

DETR Head

Au
g.

Io
ff

ea
t.

Au
g.

II
of

fe
at

.

…

Queries

Predictions I Predictions II

Ground Truth I Ground Truth II

Matching

DETR Head

Feature map

FeatAug-DETR

Fig. 1. Previous works achieve one-to-many matching via augmenting object
queries [9], [10]. We propose DataAug-DETR and FeatAug-DETR to achieve
one-to-many matching from the perspective of augmenting image features and
ground truth objects.

The DEtection TRansformer (DETR) [11] reveals the po-
tential of using transformer architectures [12] to achieve high
performance in object detection. It implements one-to-one
matching between the ground truth boxes and the predictions.
Various DETR-like frameworks have shown great success.
Quite a few follow-up works were proposed to improve DETR
by modifying the architectures, such as the architecture of the
transformer encoder [1], [13], the decoder [1], [14]–[16], and
the query designs [17]–[19].

Besides improving the DETR architectures, several recent

ar
X

iv
:2

30
3.

01
50

3v
1

 [
cs

.C
V

]
 2

 M
ar

 2
02

3

https://github.com/rongyaofang/FeatAug-DETR

2

works aim to improve the one-to-one matching mechanism in
DETR [11]. The one-to-one matching helps DETR to discard
the human-designed NMS for post-processing. In addition,
[9] showed that extra one-to-many matching supervisions can
lead to faster and better convergence. In the recent Group-
DETR [9] and Hybrid Matching [10], extra object queries are
used to formulate one-to-many matchings to provide additional
supervisions for better training DETRs.

The one-to-many matching mechanism associates each
ground truth object with multiple object queries. The object
queries interact with the image feature maps containing the
objects via cross-attention in the DETR decoder. The one-to-
one and one-to-many matchings therefore implicitly conduct
assignments between queries and the object features from the
spatial feature maps. State-of-the-art Group-DETR and Hybrid
Matching enhance one-to-one matching by augmenting extra
object queries and inputting them into the matching module.
They achieve impressive results in accelerating convergence
speed and boosting detection performance.

Our initial observation highlights that a straightforward yet
appropriately designed data augmentation scheme (DataAug-
DETR) can implicitly accomplish one-to-many matching and
surprisingly improve DETR performance. By integrating nu-
merous spatially augmented versions of a single image in a
single batch, the same objects can be assigned to distinct
queries across various augmented images. These one-to-many
assignments can greatly enhance detection performance.

Given that DETR queries accumulate information from
image feature maps, we propose approximating the impact of
spatial image augmentation by applying spatial augmentation
to the feature maps, thereby avoiding repeated forwarding of
different versions of the same image into the vision backbone.
We further propose feature augmentation (FeatAug-DETR)
for DETR, which spatially shifts and flips feature maps and
arranges different versions of a feature map in the same
batch, thereby assigning the same object queries to different
objects after feature augmentation. This method is a simple
yet effective way to enhance DETR performance.

We conduct extensive experiments to evaluate the efficiency
and effectiveness of DataAug-DETR and FeatAug-DETR. As a
plug-and-play approach, our proposed modules can be easily
integrated into different DETR variants. FeatAug-DETR sig-
nificantly accelerates convergence and also improves the per-
formance of various DETR detectors, including DAB-DETR
[19], Deformable-DETR [1], and H-Deformable-DETR [10].
FeatAug-DETR helps Deformable-DETR [1] with Swin-Large
backbone [20] reach 55.8 AP with 1× training schedule (12
epochs), which is 1.3 AP higher than that without our method
(54.5 AP), while keeping the inference FLOPs unchanged.
Moreover, FeatAug-DETR is compatible with H-Deformable-
DETR [10] as the feature augmentation realizes one-to-many
matchings from a different perspective.

In summary, our contributions are summarized as follows:

• We propose DataAug-DETR, which augments each im-
age multiple times and includes the different augmented
versions of an image in the same training batch. It boosts
DETR’s detection accuracy.

• We further propose feature augmentation (FeatAug-
DETR) for DETR. It augments the feature maps from
the vision backbone and significantly accelerates training
compared with DataAug-DETR.

• When integrating FeatAug-DETR into Hybrid Matching
[10], our method achieves 58.3 AP on COCO val2017
with Swin-L backbone and 24 training epochs, surpassing
the state-of-the-art performance by 0.5 AP.

II. RELATED WORK

A. Classic Object Detectors

Modern object detection models are divided into 2 cate-
gories, one-stage detectors, and two-stage detectors. The one-
stage detectors [3], [4] predict the positions of the objects
relying on the anchors. The two-stage detectors [6], [7] first
generate region proposals and then predict the object position
w.r.t. the proposals. These methods are both anchor-based
methods in which the predefined anchors play an important
role in the models. These classic object detectors also need
hand-designed operations such as NMS as post-processing,
which makes they cannot optimize end-to-end.

B. Label Assignment in Classic Object Detectors

Assignment between the ground truth objects and training
samples is a widely-investigated topic in classic object de-
tectors [2], [3], [6], [8], [21]. Anchor-based detectors [21],
[22] utilize Intersection-over-Union (IoU) to apply label as-
signment. The anchor will be assigned to the maximum IoU
ground truth box when the maximum IoU between an anchor
and all gt boxes exceeds the predefined IoU threshold. Anchor-
free detectors [23], [24] utilize spatial and scale constraints
when selecting positive points. The follow-up works [25], [26]
propose improvements in a similar direction. The above label
assignment methods in classic object detectors are one-to-
many matching, which always assigns several object predic-
tions with one ground truth box. Such methods require NMS
for post-processing, which makes the detectors hard to train
in an end-to-end manner.

C. Detection Transformer

Carion et al. [11] proposed Detection Transformer (DETR),
which introduces the Transformer architecture into the object
detection field. They also use bipartite matching to implement
set-based loss and make the framework an end-to-end archi-
tecture. These designs remove the handcraft components such
as anchors and NMS in the previous classic object detectors.
However, DETR still faces the problem of slow convergence
speed and relatively low performance. Also, DETR only uses
one scale image feature, which lost the benefit of the multi-
scale feature which has been proven effective in previous
works. The follow-up works proposed improvements to relieve
these problems effectively. [27] designed an encoder-only
DETR without using a decoder. Anchor-DETR [17] utilizes
designed anchor architecture in the decoder to help accelerate
training. Conditional-DETR [18] learns conditional spatial

3

query to help cross-attention head to attend to a band con-
taining a distinct region. It significantly shortens the training
epochs of DETR from 500 epochs to 50 or 108 epochs. Effi-
cient DETR [28] selects top K positions from the encoder’s
prediction to enhance decoder queries. Dynamic Head [29]
proposed a dynamic decoder to focus on important regions
from multiple feature levels. Deformable-DETR [1], [30],
[31] proposed deformable attention and replace the original
attention mechanism in DETR. It makes utilizing multi-scale
image feature feasible in DETR architecture. The follow-up
DAB-DETR [19] uses 4-D box coordinates as queries and
updates boxes layer-by-layer in the Transformer decoder part.
In the later work, DN-DETR [14] and DINO [32], they use
bounding box denoising operation and continue to shorten the
training period to 3× standard training schedule (36 epochs).

D. One-to-one Matching

Carion et al. [11] uses bipartite matching to implement one-
to-one matching between the object queries and ground truth
bounding box. The pipeline computes a pair-wise matching
cost depending on the class prediction and the similarity
of predicted and ground truth boxes. Then the Hungarian
algorithm [33] is applied to find the optimal assignment. The
design helps DETR achieve end-to-end training in the object
detection field without implementing the hand-designed NMS
operations.

However, because of the relatively small number of ground
truth boxes in each image (always smaller than 50) compared
with the number of predictions which are generally larger
than 300. The positive sample supervision provided by one-
to-one matching is relatively sparse [9]. It results in a slow
convergence speed for the DETR framework. This problem can
be effectively revealed by designing one-to-many matching
methods.

E. One-to-Many Matching

Recently, several works [9], [10] discuss the sparsity posi-
tive supervision problem of one-to-one matching and proposed
one-to-many matching methods on DETR-liked frameworks.
Group-DETR [9] decouples the positives into multiple inde-
pendent groups and keeps only one positive per gt object
in each group. Hybrid Matching [10] combines the original
one-to-one matching branch with auxiliary queries that use
one-to-many matching loss during training. The principles
of these two methods are similar. They provide extra object
queries in the decoder to produce more positive supervision
in the model. The two methods both effectively accelerate
convergence speed and boost performance for DETR.

Our method shares the same principle of generating more
positive supervision. But unlike Group-DETR or Hybrid
Matching, which implement extra object queries, we augment
the images in a batch or the features from the backbone to
realize the goal. Our method achieves obvious performance
improvement in DETR training. Through experiments, we
show that our method continues to obtain further performance
boosting when applying previous methods (such as Hybrid
Matching) together.

III. METHOD

A. A Brief Revisit of DETR and One-to-Many Matching

In DETR, an input image I is processed by the backbone
B to obtain the feature map F ∈ RĈ×Ĥ×Ŵ . A stack of self-
attentions and feed-forward networks in the DETR encoder
transform to obtain the feature maps. The transformer decoder
utilizes cross-attention to guide a series of object queries Q ∈
RN×C to aggregate information from the feature maps and
generate object predictions P , where N denotes the number
of object queries and C is the query vector dimension. The
predictions include the normalized location predictions Pl ∈
RN×4 and class predictions Pc ∈ RN×(Ncls+1), in which Ncls

denotes the class number. The one-to-one matching strategy
is adopted to associate the predictions P with ground truth
objects G.

An object query set Q = {q1, q2, . . . , qN} ∈ RN×C is
input into the Transformer decoder. The queries aggregate
information from image features F through the cross-attention
operations in the Transformer decoder D(·) which has L
Transformer layers and outputs object predictions. The pre-
dictions of each decoder layer are denoted as P 1, P 2, . . . , PL

respectively. A bipartite one-to-one matching between the
object predictions and the ground truth G is conducted at each
layer. The process is formulated as:

P l = Dl(Q,F), Lone2one =

L∑
l=1

LHungarian(P
l, G), (1)

where Dl(·) denotes the lth layer of the decoder, Lone2one

denotes the one-to-one matching loss, and LHungarian denotes
the Hungarian matching (bipartite matching) loss at each layer.
Since each prediction pli ∈ P l is generated from the object
query qi, the matchings between ground truths and predictions
can be viewed as the matchings between ground truths G and
object queries Q.

In order to better supervise DETR and accelerate its train-
ing, one-to-many matching schemes were proposed in [9],
[10]. Group DETR [9] and Hybrid Matching [10] to augment
extra object queries Q̂ and introduce one-to-many matching
loss, which achieves significant performance gain. Similar to
the formulation of one-to-one matching, the general formula-
tion of one-to-many matching can be defined as:

P̂ l
k = Dl(Q̂k, F), Lone2many =

K∑
k=1

L∑
l=1

LHungarian(P̂
l
k, Ĝk),

(2)
where K denotes the number of Hungarian matching groups.
In each matching group, the predictions corresponding to k-th
group of augmented queries Q̂k are denoted as P̂ l

k, and the
augmented ground truths are denoted as Ĝk.

In one-to-many matching, the predictions and ground truths
are augmented to generate different groups of positive super-
vision. Here we discuss the designs of Group-DETR [9] and
Hybrid Matching [10] following the above unified formulation
(Eq. (2)).

4

D
ETR

Encoder-decoder
(D

AB-D
ETR

,
D

eform
-D

ETR
et.al.)

Backbone

Aug
men

tatio
n I o

f im
g.

Matching

Aug
me
nta
tion

II o
f im
g.

Matching

Pre
dict
ion
I

Pre
dict
ion
II

Aug
men

tatio
n I o

f GT

Aug
men

tatio
n II

of G
T

Backbone

Orig
inal

feat
.

Matching

Aug
me
nta
tion

of f
eat
.

Matching

Pre
dict
ion
I

Pre
dict
ion
II

Orig
inal

GT

Aug
men

tatio
n of

GT

ima
ge

Ori
gin
al fe

at.

ima
ge D

ETR
Encoder-decoder

(D
AB-D

ETR
,

D
eform

-D
ETR

et.al.)

(a) DataAug-DETR

(b) FeatAug-DETR

Augment

Augment

Fig. 2. DataAug-DETR augments images several times and includes multiple augmented versions in the same batch. FeatAug-DETR augments feature maps
from the vision backbone multiple times and include them in the same batch. Our FeatAug-DETR can augment both single-scale and multi-scale feature maps.
Only single-scale feature maps are shown here for simplicity.

1) Group-DETR: Group-DETR utilizes K separate groups
of object queries Q1, . . . , QK and generates K groups of
predictions for each training image. The same set of ground
truth G applies one-to-one matching to each group of the
predictions respectively. The process can be formulated as:

P l
k = Dl(Qk, F), LGroup−DETR =

K∑
k=1

L∑
l=1

LHungarian(P
l
k, G),

(3)
In Group-DETR, multiple groups of object queries are

matched to the same set of ground truths. The augmentation
on the object queries helps to boost the model performance.

2) Hybrid Matching: In Hybrid Matching, it uses a second
group of object queries, which contains T object queries Q̂ =
{q̂1, q̂2, . . . , q̂T }. The second group of queries applies one-
to-many matching with repeated sets of ground truths Ĝ =
{Ĝ1, Ĝ2, . . . , ĜK}, where Ĝ1 = Ĝ2 = · · · = ĜK = G. The
process of Hybrid Matching can be formulated as:

P l = Dl(Q,F), P̂ l = Dl(Q̂, F),

LH =

L∑
l=1

LHungarian(P
l, G) +

L∑
l=1

LHungarian(P̂
l, Ĝ).

(4)

Group-DETR and Hybrid Matching both augment the object
queries Q̂ to facilitate the training. Considering the unified
formulation of one-to-many matching (Eq. (2)), Group-DETR
and Hybrid Matching both conduct one-to-many matching via
augmenting the query set Q but ignore the possibility of jointly
augmenting the image features F and the ground truths G.

B. One-to-many Matching via Data Augmentation

Our important observation is that one-to-many matching
can also be implemented via augmenting the image feature
F and the ground truths G in Eq. (2). We explore conducting
spatial augmentation on each image multiple times and include
them in the same batch. And we experimentally validate
that spatially augmented versions of the same image lead to
different query-ground truth assignments.

We conduct a pilot study on COCO train2017 dataset,
where we augment every image two times with random
flipping and cropping. The random flipping and cropping
operations follow the same operations as that in DETR [11]
for data augmentation. Such augmented image pairs are then
input to a trained Deformable-DETR whose parameters are
fixed. The Deformable-DETR has 300 object queries and
operates in a one-stage manner. We observe that 95.9% of
the corresponding objects in the two augmented images are
assigned to different object queries. The remaining 4.1%

5

objects that are assigned to the same object queries are mostly
located at the same relative positions in the two augmented
images. More specifically, ground truth bounding boxes with
unchanged queries of the two augmented images have a high
average IoU of 78.2%. This pilot study shows that, by spatially
augmenting each training image in a proper way, the objects
can be assigned to different object queries via spatial image
augmentation. It is therefore reasonable to take advantage of
image spatial transformation to modify F and G to achieve
one-to-many matching for DETRs.

The above pilot study shows that one-to-many matching
can be achieved via spatial data augmentation. We propose
DataAug-DETR, which conducts spatial image augmentation
on each training image and includes them in the same training
batch. We adopt the default data augmentation scheme of
DETR and Deformable-DETR, which includes a 50% random
horizontal flipping and a 50% random cropping, followed by
a random resizing to several pre-defined sizes with the short
edge ranging from [480, 800]. Assume that each image is
spatially augmented for N times in each training iteration.
We denote the data augmentation operation as Tn(·), where
n denotes the n-th random data augmentation to an image.
The N versions of the image pass through the image fea-
ture backbone F in DETR and generate N image features
{F̂n = F(Tn(I))}Nn=1. Note that data augmentation is also
applied to the ground truth labels G and generates N versions
of labels {Ĝn = Tn(G)}Nn=1. The augmentation process can
be formulated as:

F̂n = F(Tn(I)), Ĝn = Tn(G), for n = 1, . . . , N. (5)

Then by applying the bipartite matching on each augmented
image individually, the matching process in Eq. (2) becomes:

P̂ l
n = Dl(Q, F̂n), LDataAug =

N∑
n=1

L∑
l=1

LHungarian(P̂
l
n, Ĝn),

(6)
where Dl(·) denotes the l-th Transformer decoder layer in
DETR. Note that in the default setting of our DataAug-DETR,
we use a set of object queries Q shared with all images. During
the Hungarian matching of different augmented versions of an
image, the ground truth objects tend to be matched to different
object queries.

C. One-to-many Matching via Feature Augmentation

In our DataAug-DETR, data augmentations are applied to
each image multiple times. The augmented N versions of
the same image are encoded by the feature backbone, whose
computation cost is considerable as the N augmented versions
of each image need to be processed by the generally heavy
backbone.

Since we choose to perform simple spatial transformations
on each training image, the resulting features of the spatially
transformed images can also be approximated by conducting
the spatial transformations directly on the feature maps F of
each image I . In this way, each image only goes through

the heavy feature backbone once and can still obtain multiple
spatially augmented feature maps F̂1, . . . , F̂N . This strategy
is much more efficient than DataAug-DETR and we name it
FeatAug-DETR. The process can be formulated as:

F = F(I), F̂n = E(Tn(F)),
Ĝn = Tn(G), for n = 1, 2, . . . , N,

(7)

where E(·) denotes the Transformer encoder of DETR. Tn(·)
denotes conducting spatial augmentation on the feature map
F . We perform feature augmentation to the output feature of
the backbone and before the Transformer encoder E(·), which
we experimentally found to achieve better performance. The
detailed experiment on the selection of the feature augmenta-
tion position can be found in Section IV-G2.

After the augmented feature F̂n is obtained, a matching
process similar to that of DataAug-DETR is applied:

P̂ l
n = Dl(Q, F̂n), LFeatAug =

N∑
n=1

L∑
l=1

LHungarian(P̂
l
n, Ĝn),

(8)
For the specific operation of feature augmentation Tn(·), we

investigate feature map flipping or/and cropping.
1) Feature Map Flipping: Horizontal flipping is performed

on the feature map F (denoted as FeatAug-Flip), which is
formulated as:

F = F(I), F̂1 = E(F), F̂2 = E(Flip(F)),
Ĝ1 = G, Ĝ2 = Flip(G).

(9)

After applying FeatAug-Flip, the two augmented feature
maps F̂1 and F̂2 are forwarded to the follow-up modules of
DETR and two separate Hungarian matchings are conducted
for the two feature maps in the same training batch following
Eq. 2.

2) Feature Map Cropping: Besides the flip operation,
random cropping on the feature map is tested (denoted as
FeatAug-Crop). The process of FeatAug-Crop is similar to that
of FeatAug-Flip but replaces flipping with feature cropping.

The cropping and resizing hyperparameters are the same as
the DETR’s original image data augmentation cropping and
resizing scheme. Since some state-of-the-art DETR-like frame-
works are based on Deformable-DETR, which utilizes multi-
scale features from a backbone, our FeatAug-Crop augments
both single-scale and multi-scale feature maps. Deformable-
DETR utilizes multi-scale feature maps of 1/8, 1/16, and 1/32
original resolutions, respectively. In order to crop the features
of the three scales, we use the RoIAlign [8] to crop and
resize the same region across the three scales. The feature
augmentation for single-scale features is the same but only
conducts the augmentation on one scale.

When cropping the features with RoIAlign, we find that the
features after cropping F̂ become blurry due to the bilinear
interpolation in RoIAlign. It causes a domain gap between the
original feature F and the cropped feature F̂ . When DETR
is trained with both types of region features, its detection
performance deteriorates. We propose to use extra feature

6

projectors on the cropped features to narrow down the domain
gap. Given the three-scale features from the backbone, three
individual projectors are adopted to transform the cropped
features F̂ , each of which includes a 1× 1 convolution layer
and a group normalization layer [34]. The projectors are only
applied on F̂ during training, while the original features F
are still processed by the original detection head. The cropped
feature projectors are able to mitigate the domain gap produced
by RoIAlign and avoid performance reduction.

3) Combining Flipping and Cropping: In FeatAug-Flip and
FeatAug-Crop, the two versions of feature maps of each image,
which include the original and the augmented features, are
forwarded through the DETR detection head. It is straightfor-
ward to combine the above flipping and cropping operations
for feature augmentation. We name this combined version
FeatAug-FC. When applying FeatAug-FC, three versions of
each image’s feature maps, i.e. the original, flipped, and
cropped feature maps, are input into the DETR head.

DataAug-DETR and FeatAug-DETR are introduced to aug-
ment feature maps in the same training batch to realize one-to-
many matching for DETRs from a new perspective. Both our
methods improve detection performance and FeatAug-DETR
also significantly accelerates DETR training.

IV. EXPERIMENT

A. Dataset and Implementation Details

The experiments are conducted on COCO 2017 object
detection dataset [35]. The dataset is split into train2017
and val2017, in which the train2017 and val2017
sets contain 118k and 5k images, respectively. There are
7 instances per image on average, up to 63 instances in
a single image in the training set. We report the standard
average precision (AP) results on COCO val2017. The
DETR frameworks are tested with ResNet-50 [36], Swin-Tiny,
and Swin-Large [20] backbones. The ResNet-50 and Swin-
Tiny backbones are pretrained on ImageNet-1K [37] and Swin-
Large is pretrained on ImageNet-22K [37].

We test our proposed methods on top of DAB-DETR [19],
Deformable-DETR [1] with tricks (denoted as “Deform-DETR
w/ tck.”) from [10], and Hybrid Matching Deformable-DETR
(H-Deformable-DETR) [10]. The latter two DETR frame-
works use additional tricks, including bounding box refinement
[1], two-stage [1], mixed query selection [32] and look forward
twice [32]. These tricks accelerate the convergence speed and
improve the final performance.

We use the L1 loss and GIOU [38] loss for box regression,
and focal loss [21] with α = 0.25, γ = 2 for classification.
As the setting in DETR [11], we apply auxiliary losses after
each decoder layer. Similar to Deformable-DETR [1], we add
extra intermediate losses after the query selection module, with
the same components as for each decoder layer. We adopt the
loss coefficients: 2.0 for classification loss, 5.0 for L1 loss,
and 2.0 for GIOU loss, which is the same as [10].

Each tested DETR framework is composed of a feature
backbone, a Transformer encoder, a Transformer decoder, and
two prediction heads for boxes and labels. All Transformer
weights are initialized with Xavier initialization [39]. In the

experiments, we use 6 layers for both the Transformer encoder
and decoder. The hidden dimension of the Transformer layers
is 256. The intermediate size of the feed-forward layers in the
Transformer blocks is 2048, which follows the settings of [10].
The MLP networks for box and label predictions share the
same parameters across different decoder layers. We use 300
object queries in the decoder. We use AdamW [40] optimizer
with a weight decay 10−4. We use an initial learning rate of
2×10−4 for the Deformable DETR head and a learning rate of
2×10−5 for the backbone, which is the same as those in [1]. A
1/10 learning rate drop is applied at the 11-th, 20-th, and 30-
th epochs for the 12, 24, and 36 epoch settings, respectively.
The model is trained without dropout. The training batch size
is 16 and the experiments are run on 16 NVIDIA V100 GPUs.
During validation, we select 100 predicted boxes and labels
with the largest classification logits for evaluation by default.

B. Main Results

Our DataAug-DETR and FeatAug-DETR methods are com-
patible with most DETR-like frameworks. The results on
COCO val2017 set are shown in Table I. The DAB-
DETR-DC5-FeatAug-FC denotes applying FeatAug-FC on
top of DAB-DETR [19] with R50 dilated C5-stage image
features [41], Deformable-DETR w/ tck. -FeatAug-FC denotes
FeatAug-FC on top of Deformable-DETR with tricks, and H-
Deformable-DETR-FeatAug-Flip denotes FeatAug-Flip on top
of Hybrid matching Deformable-DETR. We experimentally
found that, when integrating with Hybrid Matching, FeatAug-
Flip achieves better performance than FeatAug-FC as shown
in Table II. Thus, we report the results of Hybrid Matching
with FeatAug-Flip and others with FeatAug-FC.

In the table, we also report the performances of some previ-
ous representative DETR variants. The compared methods in-
clude single-scale and multi-scale detectors. The Deformable-
DETR ones, which utilize multi-scale features, generally
achieve better performances than single-scale detectors.

We compare the performance gain of our DataAug-DETR
and FeatAug-DETR on top of the baselines. DataAug-DETR is
evaluated on top of Deform-DETR w/ tck. [1]. FeatAug-DETR
is evaluated on DAB-DETR [19], Deform-DETR w/ tck.,
and H-Deformable-DETR [10]. DataAug-DETR (48 epochs
training) improves the performance by about 1.0 AP compared
with the Deform-DETR w/ tck. (36 epochs training) baseline,
while the performance of the baseline trained with 48 epochs
degrades. In each epoch of DataAug-DETR, we only train
1/N of the whole training set, where N is the augmentation
times of DataAug-DETR. Thus, the training time per epoch
of DataAug-DETR is the same as that of the baseline. The
detailed investigation of the convergence speed of DataAug-
DETR is shown in Section IV-D.

On the single-scale DAB-DETR with ResNet-50 back-
bone, FeatAug-FC improves the performance for 1.4 AP with
50 training epochs and reaches 47.1 AP, which makes the
single-scale detector’s performance better than the multi-scale
Deformable-DETR [1] (46.9 AP). It is shown that the APM

and APL of DAB-DETR-DC5-FeatAug-FC exceed those of
Deformable-DETR by large margins (0.8 AP and 2.7 AP,

7

TABLE I
MAIN RESULTS OF PROPOSED DATA AUGMENTATION AND FEATURE AUGMENTATION ON VARIOUS DETR FRAMEWORKS

Method Backbone Tricks #queries #epochs AP AP50 AP75 APS APM APL

DETR-DC5 [11] R50 % 300 500 43.3 63.1 45.9 22.5 47.3 61.1
Conditional-DETR-DC5 [18] R50 % 300 108 45.1 65.4 48.5 25.3 49.0 62.2
DAB-DETR-DC5 [19] R50 % 300 50 45.7 66.2 49.0 26.1 49.4 63.1

+FeatAug-FC R50 % 300 36 46.1 (↑0.4) 66.6 49.5 27.7 50.0 62.8
+FeatAug-FC R50 % 300 50 47.1 (↑1.4) 67.4 50.8 27.9 50.9 64.3

Deformable-DETR-One-Stage [1] R50 % 300 50 44.5 63.6 48.7 27.1 47.6 59.6
Deformable-DETR [1] R50 % 300 50 46.9 65.6 51.0 29.6 50.1 61.6
DAB-Deformable-DETR [19] R50 % 300 50 46.9 66.0 50.4 29.1 49.8 62.3
DN-Deformable-DETR [14] R50 % 300 12 43.4 61.9 47.2 24.8 46.8 59.4
DN-Deformable-DETR [14] R50 % 300 50 48.6 67.4 52.7 31.0 52.0 63.7
DINO-Deformable-DETR [32]† R50 " 900 12 47.9 65.3 52.1 31.2 50.9 61.9
DINO-Deformable-DETR [32]† R50 " 900 36 50.5 68.3 55.1 32.7 53.9 64.9
DINO-Deformable-DETR [32]† Swin-L " 900 12 56.8 75.6 62.1 39.9 60.4 73.3
DINO-Deformable-DETR [32]† Swin-L " 900 36 57.8 76.5 63.2 40.6 61.8 73.5

Deformable-DETR w/ tck. [1] R50 " 300 12 47.0 65.3 50.9 30.7 50.0 60.9
+FeatAug-FC R50 " 300 12 48.7 (↑1.7) 67.1 53.3 31.2 52.1 63.2

Deformable-DETR w/ tck. [1] R50 " 300 36 49.0 67.6 53.3 32.7 51.5 63.7
+DataAug R50 " 300 48 50.0 (↑1.0) 68.6 54.6 33.3 52.9 64.5
+FeatAug-FC R50 " 300 24 49.9 (↑0.9) 68.3 54.7 32.5 52.9 65.1

Deformable-DETR w/ tck. [1] Swin-T " 300 12 49.3 67.8 53.4 31.6 52.4 64.4
+FeatAug-FC Swin-T " 300 12 50.9 (↑1.6) 69.4 55.6 33.1 54.3 66.1

Deformable-DETR w/ tck. [1] Swin-T " 300 36 51.8 70.9 56.5 34.6 55.1 67.9
+DataAug Swin-T " 300 48 53.3 (↑1.5) 72.1 58.5 35.9 56.7 68.4
+FeatAug-FC Swin-T " 300 24 52.7 (↑0.9) 71.3 57.5 35.1 56.6 67.8

Deformable-DETR w/ tck. [1] Swin-L " 300 12 54.5 74.0 59.2 37.0 58.6 71.0
+FeatAug-FC Swin-L " 300 12 55.8 (↑1.3) 75.5 61.1 39.2 60.2 72.1

Deformable-DETR w/ tck. [1] Swin-L " 300 36 56.3 75.7 61.5 39.1 60.3 71.9
+DataAug Swin-L " 300 48 57.0 (↑0.7) 76.3 62.2 40.4 60.9 73.3
+FeatAug-FC Swin-L " 300 24 57.1 (↑0.8) 76.4 62.5 41.1 60.9 73.3
+FeatAug-FC† Swin-L " 900 24 57.6 76.7 63.1 41.1 61.5 73.8

H-Deformable-DETR [10] R50 " 300 12 48.7 66.7 53.4 31.4 51.8 63.6
+FeatAug-Flip R50 " 300 12 49.4 (↑0.7) 67.5 53.7 31.9 52.7 64.3
H-Deformable-DETR [10] R50 " 300 36 50.0 68.1 54.6 32.5 53.1 65.0

+FeatAug-Flip R50 " 300 24 50.4 (↑0.4) 68.7 54.9 32.7 53.6 65.2
H-Deformable-DETR [10] Swin-L " 300 12 55.9 75.1 61.0 39.3 59.9 72.1

+FeatAug-Flip Swin-L " 300 12 56.4 (↑0.5) 75.6 61.8 40.0 60.4 72.4
H-Deformable-DETR [10] Swin-L " 300 36 57.1 76.3 62.7 40.2 61.6 73.3

+FeatAug-Flip Swin-L " 300 24 57.6 (↑0.5) 76.6 63.1 40.4 61.9 73.9
H-Deformable-DETR [10]† Swin-L " 900 36 57.9 76.9 63.8 42.5 62.0 73.5

+FeatAug-Flip† Swin-L " 900 24 58.3 (↑0.4) 77.1 64.0 41.7 62.4 73.9

Tricks: tricks described in Section IV-A. †: keep 300 instead of 100 predictions for evaluation.

TABLE II
FeatAug-FC VS. FeatAug-Flip ON TOP OF HYBRID MATCHING

DEFORMABLE-DETR

Method Backbone #epochs AP AP50 AP75

H-Deformable-DETR [10] R50 24 50.0 68.1 54.6
+FeatAug-FC R50 24 50.1 68.2 54.6
+FeatAug-Flip R50 24 50.4 68.7 54.9

respectively). When shortening the training epochs to 36
epochs, FeatAug-FC still achieves the performance of 46.1 AP,
which is 0.4 AP higher than the DAB-DETR-DC5 baseline
trained with 50 epochs.

On top of the multi-scale Deform-DETR w/ tck. baseline,

FeatAug-FC not only achieves around 1.0 AP gain after
convergence but also shortens the training epochs (24 epochs
vs. 36 epochs) on all the three tested backbones. Our FeatAug-
FC integrated into Deform-DETR w/ tck. on Swin-Large
backbone achieves 57.6 AP, which is comparable with the
state-of-the-art DINO-Deformable-DETR framework.

The work Hybrid Matching (denoted as H) [10] also tackles
the one-to-many matching problem and achieves state-of-the-
art performance. We also test our FeatAug-DETR on top of
Hybrid Matching with Swin-Large backbone and achieve the
performance of 58.3 AP, which is 0.5 AP higher than the
previous state-of-the-art DINO. In experiments, we adopt the
default hyperparameter settings of Hybrid Matching as [10].

8

10 20 30 40 50
Epochs

40

42

44

46

48

50

AP

50.049.8
49.1

46.7

49.0
48.7

47.0

Baseline
DataAug N=2

10 20 30 40 50 60
Epochs

40

42

44

46

48

50

AP

50.0
49.8

49.1

46.7

50.0
49.9

49.4
48.4

45.6

DataAug N=3
DataAug N=2

Fig. 3. Left: Training AP curves of Deform-DETR w/ tck. baseline and DataAug-DETR with N = 2. Right: Training AP curves of DataAug-DETR with
N = 2 and N = 3. It shows that augmenting each image for more than two times results in slower convergence and is non-beneficial to the final performance.

TABLE III
THE PERFORMANCE OF DataAug-DETR WITH NON-SPATIAL

TRANSFORMATION

Method Backbone #epochs

12 24 36

Deform-DETR w/ tck. R50 47.0 48.7 49.0
+DataAug R50 46.7 49.1 49.8
+DataAug-Resizing R50 45.2 48.1 48.9

C. Non-spatial vs. Spatial Transformation for DataAug-DETR
As discussed in Section III-B, the object queries’ assign-

ments with the ground truths are sensitive to position changes.
In other words, when an augmentation changes the relative
position of objects, these objects almost always match dif-
ferent queries compared to the original image/feature. Our
proposed flipping and cropping augmentations are both spatial
transformations that change relative object positions. There are
also other widely used data augmentation methods that do not
change the objects’ relative positions, such as image random
resizing. In this section, we also test applying only image
random resizing in our DataAug-DETR method, which applies
random resizing of each image several times in the same batch.
We compare the non-spatial transformation with the Deform-
DETR w/ tck. baseline and our DataAug-DETR with default
settings. In the experiments, the augmentation times for each
image N = 2.

As shown in Table III, the performance of only applying im-
age resizing in DataAug-DETR is even worse than the baseline
and our proposed default DataAug-DETR setting. The model
converges slower and leads to worse performance than the
baseline. This experiment shows that spatial transformations
such as flipping and cropping are crucial in the effectiveness
of DataAug-DETR. It also shows the rationality of the flipping
and cropping feature augmentation in FeatAug-DETR.

D. Convergence Analysis of DataAug-DETR
In the following analysis experiments, unless otherwise

specified, we test our proposed method and evaluate its differ-

TABLE IV
CONVERGENCE ANALYSIS OF DataAug-DETR

Method Backbone #epochs

12 24 36 48

Deform-DETR w/ tck. R50 47.0 48.7 49.0 48.3
+DataAug-N = 2 R50 46.7 49.1 49.8 50.0
+DataAug-N = 3 R50 45.6 48.4 49.4 49.9

ent designs on top of the Deform-DETR w/ tck. and ResNet-50
backbone and treat it as our experiment baseline.

When keeping the same 16 batch size as the baseline,
DataAug-DETR can be viewed as changing the order of
training data compared with the ordinary training pipeline.
Here we investigate the convergence speed of DataAug-DETR
AP-epoch curves.

As shown in Figure 3 (left) and Table IV, applying
DataAug-DETR improves the final converged performance.
The baseline converges with 36 epochs and achieves 49.0 AP.
Further training hurts the model as the performance drops
when trained for 48 epochs. After applying DataAug-DETR
with augmentation times N = 2, its performance at 36 epochs
is 0.8 AP higher than the baseline. The performance continues
to improve with a 48-epoch training scheme. It is also observed
that DataAug-DETR slightly slows down convergence in early
epochs.

We also investigate the augmentation number N with
DataAug-DETR, Figure 3 (right) shows that the convergence
is slower with a larger augmentation number, while the final
performance becomes saturated after N ≥ 2. Thus we adopt
N = 2 as the default setting unless otherwise specified.

E. Comparison of Different Feature Augmentation Operators

We compare the performance of the proposed FeatAug-Flip,
FeatAug-Crop, and FeatAug-FC on the Deform-DETR w/ tck.
baseline. The results are listed in Table V.

As shown in the table, all of our FeatAug-DETR’s results are
better than that of the baseline. FeatAug-Flip is 0.3 AP higher

9

0 5 10 15 20 25 30 35 40
Epochs

0.35

0.40

0.45

0.50

0.55

AP

0.4900.496

0.5630.568
0.571

R50 Baseline
R50 FeatAug-Flip
Swin-L Baseline
Swin-L FeatAug-Flip
Swin-L FeatAug-FC

0 200 400 600 800 1000 1200 1400
NVIDIA V100 GPU * Hours

0.35

0.40

0.45

0.50

0.55

AP

0.490
0.496

0.563
0.568 0.571

R50 Baseline
R50 FeatAug-Flip
Swin-L Baseline
Swin-L FeatAug-Flip
Swin-L FeatAug-FC

Fig. 4. Left: Training AP curves w.r.t training epochs of Deform-DETR w/ tck. and that integrated with our FeatAug-DETR. Right: Traing AP curves w.r.t
GPU×Hours of Deform-DETR w/ tck. and that integrated with our FeatAug-DETR.

TABLE V
RESULTS OF DIFFERENT FeatAug-DETR METHODS ON DEFORM-DETR W/

TCK.

Method #ep. AP AP50 AP75 APS APM APL

Deform-DETR w/ tck. 12 47.0 65.3 50.9 30.7 50.0 60.9
Deform-DETR w/ tck. 36 49.0 67.6 53.3 32.7 51.5 63.7

+FeatAug-Flip 12 48.4 66.7 52.8 31.7 51.4 64.0
+FeatAug-Flip 24 49.6 68.1 54.1 31.6 53.1 64.8
+FeatAug-Crop 12 48.1 66.3 52.3 30.7 51.3 63.2
+FeatAug-Crop 24 49.6 68.1 54.1 33.2 52.6 64.7
+FeatAug-FC 12 48.7 67.1 53.3 31.2 52.1 63.2
+FeatAug-FC 24 49.9 68.3 54.7 32.5 52.9 65.1

TABLE VI
COMPUTATIONAL CONSUMPTION OF FeatAug-DETR ON DEFORM-DETR

W/ TCK. WITH 16 NVIDIA V100 GPUS

Method Backbone Time (per epoch) Time (total)

Deform-DETR w/ tck. R50 40min 24h (36epochs)
+FeatAug-Flip R50 60min 24h (24epochs)

Deform-DETR w/ tck. Swin-T 50min 30h (36epochs)
+FeatAug-Flip Swin-T 70min 28h (24epochs)

Deform-DETR w/ tck. Swin-L 140min 84h (36epochs)
+FeatAug-Flip Swin-L 160min 64h (24epochs)
+FeatAug-FC Swin-L 180min 72h (24epochs)

than FeatAug-Crop with 12 training epochs. The stronger
FeatAug-FC is 0.3 AP better than FeatAug-Flip and FeatAug-
Crop with 24 epochs and reaches 49.9 AP.

The results show that FeatAug-Flip converges faster than
FeatAug-Crop, while their convergence performance is sim-
ilar. FeatAug-FC provides further performance improvement
compared with FeatAug-Flip and FeatAug-Crop, while it also
requires extra training time for epoch. Thus, FeatAug-Flip is
suitable for models with relatively small backbones (e.g. R50
and Swin-Tiny). FeatAug-FC is preferred when training with
large backbones (e.g. Swin-Large).

TABLE VII
EVALUATION ON ONE-STAGE DEFORMABLE-DETR

Method #ep. AP AP50 AP75 APS APM APL

One-stage 50 44.5 63.6 48.7 27.1 47.6 59.6
+FeatAug-FC 36 45.9 64.8 50.3 27.7 49.3 60.6
+FeatAug-FC 50 46.3 65.3 50.6 28.0 49.7 61.1

TABLE VIII
ABLATION ON INPUT FEATURE SELECTION IN FeatAug-DETR

Method #ep. AP AP50 AP75

Deform-DETR w/ tck. 12 47.0 65.3 50.9
+FeatAug-Flip-Encoder 12 46.5 64.8 50.6
+FeatAug-Flip-Default 12 48.4 66.7 52.8

TABLE IX
ABLATION ON CROPPED FEATURE PROJECTOR IN FeatAug-Crop ON

DEFORM-DETR W/ TCK.

Method #ep. AP AP50 AP75 APS APM APL

Deform-DETR w/ tck. 36 49.0 67.6 53.3 32.7 51.5 63.7
Same Proj. 24 49.2 67.8 53.6 31.8 52.9 63.4
Cropped Proj. 24 49.6 68.1 54.1 33.2 52.6 64.7

F. Convergence Analysis of FeatAug-DETR

In FeatAug-DETR, the Transformer encoder and decoder
process several augmented features during training, which
produce extra computational consumption. However, such
an increase in computation is invariant to the scale of the
backbone. When training with large-scale backbones, the extra
computational consumption is relatively small compared with
the backbone. The training time per epoch comparisons with
different backbones is shown in Table VI.

The table reports the training time of the Deform-DETR
w/ tck. baseline and that integrated with FeatAug-Flip. The
training time of FeatAug-Crop is similar to FeatAug-Flip.
Our training process uses 16 NVIDIA V100 GPUs with a
batch size of 16. As shown in Table VI, the increase in the
computation time is invariant with the size of the backbone.

10

Fig. 5. Visualization of randomly selected one channel feature of the output
of vision backbone. It visualizes the feature domain gap caused by RoIAlign,
we adopt projectors after the cropped features to mitigate the domain gap.
Left: Original input image. Middle: Original feature from vision backbone.
Right: Feature after RoIAlign operation. It shows that the augmented feature
becomes blurry compared with the original one, and such a domain gap causes
detection performance degradation. Here we adopt the 1/8 input-resolution
feature map from the R50 backbone trained with Deform-DETR w/ tck.

The proportion of the increased computation time is only about
15% when using the Swin-L backbone.

The training AP curves of FeatAug-DETR are shown in Fig-
ure 4. The left figure shows the curves w.r.t. training epochs.
Our FeatAug-DETR consistently surpasses the Deform-DETR
w/ tck. baseline by a large margin and shortens the train-
ing epochs from 36 epochs to 24 epochs. Considering our
FeatAug-DETR requires extra computation consumption in
each epoch, we also show the training AP curves w.r.t.
GPU×Hours in the right figure. It shows FeatAug-DETR still
achieves better performance than the baseline in terms of
detection accuracy and convergence speed. Especially when
the backbone scale is larger, the performance gain is more
obvious.

G. Ablation Studies

1) Evaluation on one-stage Deformable-DETR: Since we
mainly evaluate our method based on Deform-DETR w/ tck.,
which consists of tricks that boost performance. In order to
show that our methods are independent of these tricks and can
still improve various DETR variants’ performance, we also test
our method on top of the one-stage Deformable-DETR, which
is its original version. The results are shown in Table VII.

Our method accelerates its convergence speed. FeatAug-FC
trained for 36 epochs is 1.4 AP better than the one-stage
Deformable-DETR trained for 50 epochs. With the same 50
training epochs, FeatAug-FC reaches 46.3 AP, which is 1.8
AP better than the baseline.

2) Input feature of FeatAug-DETR: In our FeatAug-DETR,
we augment the image feature from the backbone and input the
augmented features into the Transformer encoder. However,
in the Deform-DETR w/ tck. baseline, the features after the
Transformer encoder can also be chosen as the alternative
for augmentation. To analyze which feature is better as the
input of FeatAug-DETR, we test them and the results are
shown in Table VIII. FeatAug-DETR on the feature after the
Transformer encoder is denoted as FeatAug-Encoder and the
augmentation on the feature directly from the backbone is
denoted as FeatAug-Default.

As shown in the table, the feature augmentation on the
encoder feature actually hurts the performance and is even
worse than that of the baseline. Since the Transformer encoder
enhances the image features with positional information. If
the feature augmentation is applied after the Transformer

0.00 0.25 0.50 0.75 1.00
Center X

0.0

0.2

0.4

0.6

0.8

1.0

Ce
nt

er
 Y

Object Query #11

0.00 0.25 0.50 0.75 1.00
Center X

0.0

0.2

0.4

0.6

0.8

1.0
Object Query #27

0.00 0.25 0.50 0.75 1.00
Center X

0.0

0.2

0.4

0.6

0.8

1.0
Object Query #145

0.00 0.25 0.50 0.75 1.00
Center X

0.0

0.2

0.4

0.6

0.8

1.0
Object Query #238

0.00 0.25 0.50 0.75 1.00
Width

0.0

0.2

0.4

0.6

0.8

1.0

He
ig

ht

0.00 0.25 0.50 0.75 1.00
Width

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
Width

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
Width

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 6. We visualize the predicted bounding boxes position distribution of
4 randomly selected object queries on 10000 random selected images from
COCO train2017 set. The top 4 figures show the predicted center x and
center y of the corresponding bounding boxes, while the bottom 4 figures
show the predicted heights and widths of the queries.

encoder, it would mislead the later Transformer decoder about
the positional information of this image and thus harm the
Transformer decoder training.

3) Cropped feature projectors in FeatAug-DETR: In our
FeatAug-Crop and FeatAug-FC, in order to mitigate the do-
main gap caused by RoIAlign, we adopt projectors after the
cropped features. The visualization of the caused domain
gap is shown in Figure 5. Here we ablate on removing the
individual projectors and using the same projector on both
the original and cropped features. The results are shown in
Table IX. Using the projectors for cropped features in FeatAug-
Crop performs 0.4 AP better than using the same projector for
both cropped and original features. The performance gain is
more obvious on small objects and large objects, where APS

increases by 1.4 and APL by 1.3.

H. Visualization of Position-Aware Object Queries

In the pilot study in Section III-A, it shows that spatial
augmentation changes the query-object assignments. We fur-
ther visualize some bounding boxes that each object query
predicts. Here we test a trained Deformable-DETR without our
DataAug-DETR or FeatAug-DETR. We record all the output
bounding box predictions that are matched with the ground
truth objects for each query and visualize {center x, center y,
width, height} of all the predicted bounding boxes for each
query. Here we visualize four queries (#11, #27, #145, and
#238) in Figure 6.

As shown in Figure 6, the predicted center of each object
query is almost always located around a fixed position, which
means that a spatial transformation that changes the bounding
boxes’ relative positions on the feature map (such as flipping)
can change the matched object queries. Furthermore, by ob-
serving the predicted heights and widths distribution of Query
#11 and Query #27, it shows that though the two queries
predict similar center positions, their predicted height and
width are differently distributed. Query #11 always predicts
large objects while Query #27 is always in charge of small
objects. It shows that the cropping operation that changes the
sizes of the predicted bounding boxes’ also varies the object-
query matchings.

11

The above two observations show that the object queries as-
signed to predicted bounding boxes are highly position-aware.
Applying flipping and cropping operations makes different
object queries match different ground truth objects.

V. CONCLUSION

In this paper, we enrich the formulation of one-to-many
matching for DETRs. We summarize the one-to-many match-
ing mechanism of augmenting object queries for Group-
DETR [9] and Hybrid Matching [10] and propose augmenting
image features to implement one-to-many matching. To be
detailed, we proposed DataAug-DETR method to help DETR-
like methods to achieve higher performance after convergence.
Further, we also propose the FeatAug-DETR method, including
FeatAug-Flip. FeatAug-Crop, and FeatAug-FC. The FeatAug-
DETR method significantly accelerates DETR training and
accomplishes better performance. FeatAug-DETR improve the
performance of Deformable-DETR [1] with different back-
bones for around 1.0 AP and shorten the training epochs to
only 1× or 2× standard training schedule. When applying
FeatAug-DETR together with Hybrid Matching [10] and using
a Swin-Large backbone, we achieve the current state-of-the-art
performance of 58.3 AP.

REFERENCES

[1] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable
DETR: deformable transformers for end-to-end object detection,”
in 9th International Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.
[Online]. Available: https://openreview.net/forum?id=gZ9hCDWe6ke

[2] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You
only look once: Unified, real-time object detection,” in 2016 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society, 2016,
pp. 779–788. [Online]. Available: https://doi.org/10.1109/CVPR.2016.91

[3] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” in
2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. IEEE Computer
Society, 2017, pp. 6517–6525. [Online]. Available: https://doi.org/10.
1109/CVPR.2017.690

[4] ——, “Yolov3: An incremental improvement,” CoRR, vol.
abs/1804.02767, 2018. [Online]. Available: http://arxiv.org/abs/1804.
02767

[5] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich
feature hierarchies for accurate object detection and semantic
segmentation,” in 2014 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28,
2014. IEEE Computer Society, 2014, pp. 580–587. [Online]. Available:
https://doi.org/10.1109/CVPR.2014.81

[6] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN:
towards real-time object detection with region proposal networks,”
in Advances in Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Systems 2015, December
7-12, 2015, Montreal, Quebec, Canada, C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, Eds., 2015, pp. 91–
99. [Online]. Available: https://proceedings.neurips.cc/paper/2015/hash/
14bfa6bb14875e45bba028a21ed38046-Abstract.html

[7] ——, “Faster R-CNN: towards real-time object detection with
region proposal networks,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 39, no. 6, pp. 1137–1149, 2017. [Online]. Available: https:
//doi.org/10.1109/TPAMI.2016.2577031

[8] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask R-CNN,”
in IEEE International Conference on Computer Vision, ICCV 2017,
Venice, Italy, October 22-29, 2017. IEEE Computer Society, 2017, pp.
2980–2988. [Online]. Available: https://doi.org/10.1109/ICCV.2017.322

[9] Q. Chen, X. Chen, G. Zeng, and J. Wang, “Group DETR: fast
training convergence with decoupled one-to-many label assignment,”
CoRR, vol. abs/2207.13085, 2022. [Online]. Available: https://doi.org/
10.48550/arXiv.2207.13085

[10] D. Jia, Y. Yuan, H. He, X. Wu, H. Yu, W. Lin, L. Sun, C. Zhang,
and H. Hu, “Detrs with hybrid matching,” CoRR, vol. abs/2207.13080,
2022. [Online]. Available: https://doi.org/10.48550/arXiv.2207.13080

[11] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
Computer Vision - ECCV 2020 - 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part I, ser. Lecture Notes in
Computer Science, A. Vedaldi, H. Bischof, T. Brox, and J. Frahm,
Eds., vol. 12346. Springer, 2020, pp. 213–229. [Online]. Available:
https://doi.org/10.1007/978-3-030-58452-8 13

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, I. Guyon, U. von Luxburg, S. Bengio,
H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, Eds.,
2017, pp. 5998–6008. [Online]. Available: https://proceedings.neurips.
cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[13] X. Cao, P. Yuan, B. Feng, and K. Niu, “CF-DETR: coarse-to-
fine transformers for end-to-end object detection,” in Thirty-Sixth
AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth
Conference on Innovative Applications of Artificial Intelligence,
IAAI 2022, The Twelveth Symposium on Educational Advances in
Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March
1, 2022. AAAI Press, 2022, pp. 185–193. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/19893

[14] F. Li, H. Zhang, S. Liu, J. Guo, L. M. Ni, and L. Zhang, “DN-
DETR: accelerate DETR training by introducing query denoising,” in
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2022, New Orleans, LA, USA, June 18-24, 2022. IEEE,
2022, pp. 13 609–13 617. [Online]. Available: https://doi.org/10.1109/
CVPR52688.2022.01325

[15] P. Gao, M. Zheng, X. Wang, J. Dai, and H. Li, “Fast convergence
of DETR with spatially modulated co-attention,” in 2021 IEEE/CVF
International Conference on Computer Vision, ICCV 2021, Montreal,
QC, Canada, October 10-17, 2021. IEEE, 2021, pp. 3601–3610.
[Online]. Available: https://doi.org/10.1109/ICCV48922.2021.00360

[16] X. Dai, Y. Chen, J. Yang, P. Zhang, L. Yuan, and L. Zhang, “Dynamic
DETR: end-to-end object detection with dynamic attention,” in 2021
IEEE/CVF International Conference on Computer Vision, ICCV 2021,
Montreal, QC, Canada, October 10-17, 2021. IEEE, 2021, pp.
2968–2977. [Online]. Available: https://doi.org/10.1109/ICCV48922.
2021.00298

[17] Y. Wang, X. Zhang, T. Yang, and J. Sun, “Anchor DETR: query
design for transformer-based detector,” in Thirty-Sixth AAAI Conference
on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference
on Innovative Applications of Artificial Intelligence, IAAI 2022,
The Twelveth Symposium on Educational Advances in Artificial
Intelligence, EAAI 2022 Virtual Event, February 22 - March 1,
2022. AAAI Press, 2022, pp. 2567–2575. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/20158

[18] D. Meng, X. Chen, Z. Fan, G. Zeng, H. Li, Y. Yuan, L. Sun, and J. Wang,
“Conditional DETR for fast training convergence,” in 2021 IEEE/CVF
International Conference on Computer Vision, ICCV 2021, Montreal,
QC, Canada, October 10-17, 2021. IEEE, 2021, pp. 3631–3640.
[Online]. Available: https://doi.org/10.1109/ICCV48922.2021.00363

[19] S. Liu, F. Li, H. Zhang, X. Yang, X. Qi, H. Su, J. Zhu, and L. Zhang,
“DAB-DETR: dynamic anchor boxes are better queries for DETR,”
in The Tenth International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.
[Online]. Available: https://openreview.net/forum?id=oMI9PjOb9Jl

[20] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using
shifted windows,” in 2021 IEEE/CVF International Conference on
Computer Vision, ICCV 2021, Montreal, QC, Canada, October
10-17, 2021. IEEE, 2021, pp. 9992–10 002. [Online]. Available:
https://doi.org/10.1109/ICCV48922.2021.00986

[21] T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár, “Focal
loss for dense object detection,” in IEEE International Conference
on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017.
IEEE Computer Society, 2017, pp. 2999–3007. [Online]. Available:
https://doi.org/10.1109/ICCV.2017.324

[22] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and
A. C. Berg, “SSD: single shot multibox detector,” in Computer Vision -
ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part I, ser. Lecture Notes in
Computer Science, B. Leibe, J. Matas, N. Sebe, and M. Welling,

https://openreview.net/forum?id=gZ9hCDWe6ke
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/CVPR.2017.690
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
https://doi.org/10.1109/CVPR.2014.81
https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.48550/arXiv.2207.13085
https://doi.org/10.48550/arXiv.2207.13085
https://doi.org/10.48550/arXiv.2207.13080
https://doi.org/10.1007/978-3-030-58452-8_13
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://ojs.aaai.org/index.php/AAAI/article/view/19893
https://doi.org/10.1109/CVPR52688.2022.01325
https://doi.org/10.1109/CVPR52688.2022.01325
https://doi.org/10.1109/ICCV48922.2021.00360
https://doi.org/10.1109/ICCV48922.2021.00298
https://doi.org/10.1109/ICCV48922.2021.00298
https://ojs.aaai.org/index.php/AAAI/article/view/20158
https://doi.org/10.1109/ICCV48922.2021.00363
https://openreview.net/forum?id=oMI9PjOb9Jl
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1109/ICCV.2017.324

12

Eds., vol. 9905. Springer, 2016, pp. 21–37. [Online]. Available:
https://doi.org/10.1007/978-3-319-46448-0 2

[23] Z. Tian, C. Shen, H. Chen, and T. He, “FCOS: fully convolutional one-
stage object detection,” in 2019 IEEE/CVF International Conference
on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 -
November 2, 2019. IEEE, 2019, pp. 9626–9635. [Online]. Available:
https://doi.org/10.1109/ICCV.2019.00972

[24] S. Zhang, C. Chi, Y. Yao, Z. Lei, and S. Z. Li, “Bridging the gap
between anchor-based and anchor-free detection via adaptive training
sample selection,” in 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA,
June 13-19, 2020. Computer Vision Foundation / IEEE, 2020, pp.
9756–9765. [Online]. Available: https://openaccess.thecvf.com/content
CVPR 2020/html/Zhang Bridging the Gap Between Anchor-Based
and Anchor-Free Detection via Adaptive CVPR 2020 paper.html

[25] K. Kim and H. S. Lee, “Probabilistic anchor assignment with
iou prediction for object detection,” in Computer Vision - ECCV
2020 - 16th European Conference, Glasgow, UK, August 23-28,
2020, Proceedings, Part XXV, ser. Lecture Notes in Computer
Science, A. Vedaldi, H. Bischof, T. Brox, and J. Frahm, Eds.,
vol. 12370. Springer, 2020, pp. 355–371. [Online]. Available:
https://doi.org/10.1007/978-3-030-58595-2 22

[26] Z. Ge, S. Liu, Z. Li, O. Yoshie, and J. Sun, “OTA:
optimal transport assignment for object detection,” in IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR 2021, virtual, June 19-25, 2021. Computer Vision
Foundation / IEEE, 2021, pp. 303–312. [Online]. Available: https:
//openaccess.thecvf.com/content/CVPR2021/html/Ge OTA Optimal
Transport Assignment for Object Detection CVPR 2021 paper.html

[27] Z. Sun, S. Cao, Y. Yang, and K. Kitani, “Rethinking transformer-based
set prediction for object detection,” in 2021 IEEE/CVF International
Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada,
October 10-17, 2021. IEEE, 2021, pp. 3591–3600. [Online]. Available:
https://doi.org/10.1109/ICCV48922.2021.00359

[28] Z. Yao, J. Ai, B. Li, and C. Zhang, “Efficient DETR: improving end-
to-end object detector with dense prior,” CoRR, vol. abs/2104.01318,
2021. [Online]. Available: https://arxiv.org/abs/2104.01318

[29] X. Dai, Y. Chen, B. Xiao, D. Chen, M. Liu, L. Yuan, and L. Zhang,
“Dynamic head: Unifying object detection heads with attentions,” in
IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2021, virtual, June 19-25, 2021. Computer Vision Foundation / IEEE,
2021, pp. 7373–7382. [Online]. Available: https://openaccess.thecvf.
com/content/CVPR2021/html/Dai Dynamic Head Unifying Object
Detection Heads With Attentions CVPR 2021 paper.html

[30] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei,
“Deformable convolutional networks,” in IEEE International Conference
on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017.
IEEE Computer Society, 2017, pp. 764–773. [Online]. Available:
https://doi.org/10.1109/ICCV.2017.89

[31] X. Zhu, H. Hu, S. Lin, and J. Dai, “Deformable convnets V2:
more deformable, better results,” in IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA,
June 16-20, 2019. Computer Vision Foundation / IEEE, 2019, pp.
9308–9316. [Online]. Available: http://openaccess.thecvf.com/content
CVPR 2019/html/Zhu Deformable ConvNets V2 More Deformable
Better Results CVPR 2019 paper.html

[32] H. Zhang, F. Li, S. Liu, L. Zhang, H. Su, J. Zhu, L. M. Ni, and
H. Shum, “DINO: DETR with improved denoising anchor boxes
for end-to-end object detection,” CoRR, vol. abs/2203.03605, 2022.
[Online]. Available: https://doi.org/10.48550/arXiv.2203.03605

[33] H. W. Kuhn, “The hungarian method for the assignment problem,”
in 50 Years of Integer Programming 1958-2008 - From the Early
Years to the State-of-the-Art, M. Jünger, T. M. Liebling, D. Naddef,
G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and
L. A. Wolsey, Eds. Springer, 2010, pp. 29–47. [Online]. Available:
https://doi.org/10.1007/978-3-540-68279-0 2

[34] Y. Wu and K. He, “Group normalization,” in Computer Vision -
ECCV 2018 - 15th European Conference, Munich, Germany, September
8-14, 2018, Proceedings, Part XIII, ser. Lecture Notes in Computer
Science, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss,
Eds., vol. 11217. Springer, 2018, pp. 3–19. [Online]. Available:
https://doi.org/10.1007/978-3-030-01261-8 1

[35] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: common objects in
context,” in Computer Vision - ECCV 2014 - 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V, ser.
Lecture Notes in Computer Science, D. J. Fleet, T. Pajdla, B. Schiele,

and T. Tuytelaars, Eds., vol. 8693. Springer, 2014, pp. 740–755.
[Online]. Available: https://doi.org/10.1007/978-3-319-10602-1 48

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016. IEEE Computer Society, 2016, pp. 770–778. [Online].
Available: https://doi.org/10.1109/CVPR.2016.90

[37] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in 2009
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA.
IEEE Computer Society, 2009, pp. 248–255. [Online]. Available:
https://doi.org/10.1109/CVPR.2009.5206848

[38] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. D. Reid, and
S. Savarese, “Generalized intersection over union: A metric and a
loss for bounding box regression,” in IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA,
June 16-20, 2019. Computer Vision Foundation / IEEE, 2019, pp.
658–666. [Online]. Available: http://openaccess.thecvf.com/content
CVPR 2019/html/Rezatofighi Generalized Intersection Over Union
A Metric and a Loss for CVPR 2019 paper.html

[39] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics,
AISTATS 2010, Chia Laguna Resort, Sardinia, Italy, May 13-15,
2010, ser. JMLR Proceedings, Y. W. Teh and D. M. Titterington,
Eds., vol. 9. JMLR.org, 2010, pp. 249–256. [Online]. Available:
http://proceedings.mlr.press/v9/glorot10a.html

[40] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.
[Online]. Available: https://openreview.net/forum?id=Bkg6RiCqY7

[41] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei, “Fully convolutional
instance-aware semantic segmentation,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI,
USA, July 21-26, 2017. IEEE Computer Society, 2017, pp. 4438–4446.
[Online]. Available: https://doi.org/10.1109/CVPR.2017.472

https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/ICCV.2019.00972
https://openaccess.thecvf.com/content_CVPR_2020/html/Zhang_Bridging_the_Gap_Between_Anchor-Based_and_Anchor-Free_Detection_via_Adaptive_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Zhang_Bridging_the_Gap_Between_Anchor-Based_and_Anchor-Free_Detection_via_Adaptive_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Zhang_Bridging_the_Gap_Between_Anchor-Based_and_Anchor-Free_Detection_via_Adaptive_CVPR_2020_paper.html
https://doi.org/10.1007/978-3-030-58595-2_22
https://openaccess.thecvf.com/content/CVPR2021/html/Ge_OTA_Optimal_Transport_Assignment_for_Object_Detection_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Ge_OTA_Optimal_Transport_Assignment_for_Object_Detection_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Ge_OTA_Optimal_Transport_Assignment_for_Object_Detection_CVPR_2021_paper.html
https://doi.org/10.1109/ICCV48922.2021.00359
https://arxiv.org/abs/2104.01318
https://openaccess.thecvf.com/content/CVPR2021/html/Dai_Dynamic_Head_Unifying_Object_Detection_Heads_With_Attentions_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Dai_Dynamic_Head_Unifying_Object_Detection_Heads_With_Attentions_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Dai_Dynamic_Head_Unifying_Object_Detection_Heads_With_Attentions_CVPR_2021_paper.html
https://doi.org/10.1109/ICCV.2017.89
http://openaccess.thecvf.com/content_CVPR_2019/html/Zhu_Deformable_ConvNets_V2_More_Deformable_Better_Results_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Zhu_Deformable_ConvNets_V2_More_Deformable_Better_Results_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Zhu_Deformable_ConvNets_V2_More_Deformable_Better_Results_CVPR_2019_paper.html
https://doi.org/10.48550/arXiv.2203.03605
https://doi.org/10.1007/978-3-540-68279-0_2
https://doi.org/10.1007/978-3-030-01261-8_1
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2009.5206848
http://openaccess.thecvf.com/content_CVPR_2019/html/Rezatofighi_Generalized_Intersection_Over_Union_A_Metric_and_a_Loss_for_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Rezatofighi_Generalized_Intersection_Over_Union_A_Metric_and_a_Loss_for_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Rezatofighi_Generalized_Intersection_Over_Union_A_Metric_and_a_Loss_for_CVPR_2019_paper.html
http://proceedings.mlr.press/v9/glorot10a.html
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1109/CVPR.2017.472

	I Introduction
	II Related Work
	II-A Classic Object Detectors
	II-B Label Assignment in Classic Object Detectors
	II-C Detection Transformer
	II-D One-to-one Matching
	II-E One-to-Many Matching

	III Method
	III-A A Brief Revisit of DETR and One-to-Many Matching
	III-A1 Group-DETR
	III-A2 Hybrid Matching

	III-B One-to-many Matching via Data Augmentation
	III-C One-to-many Matching via Feature Augmentation
	III-C1 Feature Map Flipping
	III-C2 Feature Map Cropping
	III-C3 Combining Flipping and Cropping

	IV Experiment
	IV-A Dataset and Implementation Details
	IV-B Main Results
	IV-C Non-spatial vs. Spatial Transformation for DataAug-DETR
	IV-D Convergence Analysis of DataAug-DETR
	IV-E Comparison of Different Feature Augmentation Operators
	IV-F Convergence Analysis of FeatAug-DETR
	IV-G Ablation Studies
	IV-G1 Evaluation on one-stage Deformable-DETR
	IV-G2 Input feature of FeatAug-DETR
	IV-G3 Cropped feature projectors in FeatAug-DETR

	IV-H Visualization of Position-Aware Object Queries

	V Conclusion
	References

